4

Evaluate:$$\int \dfrac{\cot^3x}{\sqrt{1+\csc^4x}}\;dx$$

Y-dog
  • 627

1 Answers1

8

Rewrite the integral as

$$\int dx \frac{\cot{x} (\csc^2{x}-1)}{\sqrt{1+\csc^4{x}}}$$

Split the integral along the numerator. The first piece is

$$\int dx \frac{\csc^2{x} \cot{x}}{\sqrt{1+\csc^4{x}}} = -\int \frac{d(\cot{x}) \cot{x}}{\sqrt{1+(1+\cot^2{x})^2}} = -\frac12 \int \frac{du}{\sqrt{(u+1)^2+1}}$$

where $u=\cot^2{x}$. The second piece is

$$-\int dx \frac{\cot{x}}{\sqrt{1+\csc^4{x}}} = -\int dx \frac{\cos{x}\sin{x}}{\sqrt{1+\sin^4{x}}} = -\frac12 \int \frac{dv}{\sqrt{1+v^2}}$$

where $v=\sin^2{x}$. Use

$$\int \frac{dw}{\sqrt{w^2+1}} = \log{(w+\sqrt{w^2+1})}+C$$

and you should be able to finish this off.

Ron Gordon
  • 138,521