I need to use residues to evaluate $\int_0^\infty \frac{1}{1+x^5} \, dx$. Since the intergral goes from $0 \to \infty$ and not $- \infty$ to $\infty$, am I allowed to integrate over a quarter-circle instead of a semicircle? So I mean: let $C_R$ be the quarter-circle extending from $0$ to $\frac{\pi}{2}$ of radius $R$. Then can we say
$$\int_0^\infty \frac{1}{1+x^5} \, dx = \int_{C_R} \frac{1}{1+z^5} \, dz + \int_0^R \frac{1}{1+x^5} \, dx \hspace{0.2cm} ?$$
And if we cannot do this over a quarter-circle, what can I do instead? Because $\frac{1}{1+x^5}$ is not an even function and therefore I cannot write use $\int_0^\infty f(x) \,dx = 2 \int_{-\infty}^\infty f(x) \, dx$. In general, how to integrate $\int_0^\infty f(x) \, dx$ when $f(x)$ is not even?