hard to imagine why you would do this with no actual numbers For $a=1, b=1$ I get $x=41$
Method described by Prof. Lubin at Continued fraction of $\sqrt{67} - 4$
$$ \sqrt { 41} = 6 + \frac{ \sqrt {41} - 6 }{ 1 } $$
$$ \frac{ 1 }{ \sqrt {41} - 6 } = \frac{ \sqrt {41} + 6 }{5 } = 2 + \frac{ \sqrt {41} - 4 }{5 } $$
$$ \frac{ 5 }{ \sqrt {41} - 4 } = \frac{ \sqrt {41} + 4 }{5 } = 2 + \frac{ \sqrt {41} - 6 }{5 } $$
$$ \frac{ 5 }{ \sqrt {41} - 6 } = \frac{ \sqrt {41} + 6 }{1 } = 12 + \frac{ \sqrt {41} - 6 }{1 } $$
Simple continued fraction tableau:
$$
\begin{array}{cccccccccccccccc}
& & 6 & & 2 & & 2 & & 12 & & 2 & & 2 & & 12 & \\
\\
\frac{ 0 }{ 1 } & \frac{ 1 }{ 0 } & & \frac{ 6 }{ 1 } & & \frac{ 13 }{ 2 } & & \frac{ 32 }{ 5 } & & \frac{ 397 }{ 62 } & & \frac{ 826 }{ 129 } & & \frac{ 2049 }{ 320 } \\
\\
& 1 & & -5 & & 5 & & -1 & & 5 & & -5 & & 1
\end{array}
$$
$$
\begin{array}{cccc}
\frac{ 1 }{ 0 } & 1^2 - 41 \cdot 0^2 = 1 & \mbox{digit} & 6 \\
\frac{ 6 }{ 1 } & 6^2 - 41 \cdot 1^2 = -5 & \mbox{digit} & 2 \\
\frac{ 13 }{ 2 } & 13^2 - 41 \cdot 2^2 = 5 & \mbox{digit} & 2 \\
\frac{ 32 }{ 5 } & 32^2 - 41 \cdot 5^2 = -1 & \mbox{digit} & 12 \\
\frac{ 397 }{ 62 } & 397^2 - 41 \cdot 62^2 = 5 & \mbox{digit} & 2 \\
\frac{ 826 }{ 129 } & 826^2 - 41 \cdot 129^2 = -5 & \mbox{digit} & 2 \\
\frac{ 2049 }{ 320 } & 2049^2 - 41 \cdot 320^2 = 1 & \mbox{digit} & 12 \\
\end{array}
$$
$$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $$
$$ \sqrt { 130} = 11 + \frac{ \sqrt {130} - 11 }{ 1 } $$
$$ \frac{ 1 }{ \sqrt {130} - 11 } = \frac{ \sqrt {130} + 11 }{9 } = 2 + \frac{ \sqrt {130} - 7 }{9 } $$
$$ \frac{ 9 }{ \sqrt {130} - 7 } = \frac{ \sqrt {130} + 7 }{9 } = 2 + \frac{ \sqrt {130} - 11 }{9 } $$
$$ \frac{ 9 }{ \sqrt {130} - 11 } = \frac{ \sqrt {130} + 11 }{1 } = 22 + \frac{ \sqrt {130} - 11 }{1 } $$
Simple continued fraction tableau:
$$
\begin{array}{cccccccccccccccc}
& & 11 & & 2 & & 2 & & 22 & & 2 & & 2 & & 22 & \\
\\
\frac{ 0 }{ 1 } & \frac{ 1 }{ 0 } & & \frac{ 11 }{ 1 } & & \frac{ 23 }{ 2 } & & \frac{ 57 }{ 5 } & & \frac{ 1277 }{ 112 } & & \frac{ 2611 }{ 229 } & & \frac{ 6499 }{ 570 } \\
\\
& 1 & & -9 & & 9 & & -1 & & 9 & & -9 & & 1
\end{array}
$$
$$
\begin{array}{cccc}
\frac{ 1 }{ 0 } & 1^2 - 130 \cdot 0^2 = 1 & \mbox{digit} & 11 \\
\frac{ 11 }{ 1 } & 11^2 - 130 \cdot 1^2 = -9 & \mbox{digit} & 2 \\
\frac{ 23 }{ 2 } & 23^2 - 130 \cdot 2^2 = 9 & \mbox{digit} & 2 \\
\frac{ 57 }{ 5 } & 57^2 - 130 \cdot 5^2 = -1 & \mbox{digit} & 22 \\
\frac{ 1277 }{ 112 } & 1277^2 - 130 \cdot 112^2 = 9 & \mbox{digit} & 2 \\
\frac{ 2611 }{ 229 } & 2611^2 - 130 \cdot 229^2 = -9 & \mbox{digit} & 2 \\
\frac{ 6499 }{ 570 } & 6499^2 - 130 \cdot 570^2 = 1 & \mbox{digit} & 22 \\
\end{array}
$$
$$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $$
$$ \sqrt { 370} = 19 + \frac{ \sqrt {370} - 19 }{ 1 } $$
$$ \frac{ 1 }{ \sqrt {370} - 19 } = \frac{ \sqrt {370} + 19 }{9 } = 4 + \frac{ \sqrt {370} - 17 }{9 } $$
$$ \frac{ 9 }{ \sqrt {370} - 17 } = \frac{ \sqrt {370} + 17 }{9 } = 4 + \frac{ \sqrt {370} - 19 }{9 } $$
$$ \frac{ 9 }{ \sqrt {370} - 19 } = \frac{ \sqrt {370} + 19 }{1 } = 38 + \frac{ \sqrt {370} - 19 }{1 } $$
Simple continued fraction tableau:
$$
\begin{array}{cccccccccccccccc}
& & 19 & & 4 & & 4 & & 38 & & 4 & & 4 & & 38 & \\
\\
\frac{ 0 }{ 1 } & \frac{ 1 }{ 0 } & & \frac{ 19 }{ 1 } & & \frac{ 77 }{ 4 } & & \frac{ 327 }{ 17 } & & \frac{ 12503 }{ 650 } & & \frac{ 50339 }{ 2617 } & & \frac{ 213859 }{ 11118 } \\
\\
& 1 & & -9 & & 9 & & -1 & & 9 & & -9 & & 1
\end{array}
$$
$$
\begin{array}{cccc}
\frac{ 1 }{ 0 } & 1^2 - 370 \cdot 0^2 = 1 & \mbox{digit} & 19 \\
\frac{ 19 }{ 1 } & 19^2 - 370 \cdot 1^2 = -9 & \mbox{digit} & 4 \\
\frac{ 77 }{ 4 } & 77^2 - 370 \cdot 4^2 = 9 & \mbox{digit} & 4 \\
\frac{ 327 }{ 17 } & 327^2 - 370 \cdot 17^2 = -1 & \mbox{digit} & 38 \\
\frac{ 12503 }{ 650 } & 12503^2 - 370 \cdot 650^2 = 9 & \mbox{digit} & 4 \\
\frac{ 50339 }{ 2617 } & 50339^2 - 370 \cdot 2617^2 = -9 & \mbox{digit} & 4 \\
\frac{ 213859 }{ 11118 } & 213859^2 - 370 \cdot 11118^2 = 1 & \mbox{digit} & 38 \\
\end{array}
$$