-2

Prove that $\lim_{n\rightarrow\infty} \frac{n^3}{3^n}$ is finite.

How can I prove that this sequence converges? I tried so many ways but didn't succeed tried with the root test, integral test, ratio test

1 Answers1

1

Another approach :

Consider the series $\sum_{n\in\Bbb{N}}\frac{n^3}{3^n}$

Using Ratio Test,

$\frac{x_{n+1}}{x_n}=\frac{(n+1)^3}{3^{n+1}}×\frac{3^n}{n^3}=\frac{1}{3}(1+\frac{1}{n})^3$

$\lim_{n\to\infty} \frac{x_{n+1}}{x_n}= \frac{1}{3}<1$

Hence, $\sum_{n\in\Bbb{N}}\frac{n^3}{3^n}<\infty$ implies $\frac{n^3}{3^n}\to 0$

Sourav Ghosh
  • 12,997