As a matter of fact this identity is straightforward to verify by doing the consecutive integrations over $\lambda_{j} \in (\lambda_{j-1},1) $ for $j=n-1,n-2,\cdots, 1$ and splitting the integration range accordingly so that all the expressions under the absolute values are always positive.
It is just that calculations are tedious. However the key to the verification procedure is the following identity for the incomplete beta function:
\begin{eqnarray}
B_x \left(a+n,b+m\right) = \frac{a^{(n)} b^{(m)}}{(a+b)^{(n+m)}} \cdot \left[ \right. \\
\left.
B_x\left(a,b\right) + \right. \\
\left.
\frac{x^a (1-x)^{b-1}}{a+b-1} \sum\limits_{k=1}^m \frac{(a+b-1)^{(k)}}{b^{(k)}} \cdot (1-x)^k + \right. \\
\left.
- \frac{x^{a-1} (1-x)^{b+m}}{a+b+m-1} \cdot \frac{(a+b)^{(m)}}{b^{(m)}} \sum\limits_{k=1}^n \frac{(a+b+m-1)^{(k)}}{a^{(k)}} \cdot x^k \right. \\
\left.
\right] \quad (1)
\end{eqnarray}
where $a\ge 0$, $b \ge 0$, $x \in {\mathbb R}$ and $n \in {\mathbb N}$,$m \in {\mathbb N}$. This formula is a generalization of the identity from here..
Making use of $(1)$ we will be doing symbolic integrations using the following code:
l1 =.; a =.; b =.; x =.;
subst1 :=
Beta[z_, x + n_., x + m_.] :>
Pochhammer[x, n]/
Pochhammer[2 x + m,
n] (Pochhammer[x, m]/
Pochhammer[2 x, m] (Beta[z, x, x] +
z^(x) (1 - z)^(x - 1)/(2 x - 1) Sum[
Pochhammer[2 x - 1, k]/Pochhammer[x, k] (1 - z)^k, {k, 1,
m}]) - z^(x - 1) (1 - z)^(x + m)/(2 x + m - 1) Sum[
Pochhammer[2 x + m - 1, k]/Pochhammer[x, k] z^k, {k, 1, n}]);
Simplify[(Simplify[(Expand[(l1 - a) (l1 - b) (b -
a) l1^(x - 1) a^(x - 1) b^(x - 1)] /.
a^n1_ b^n2_ :> (1 - l1)^(n1 + n2 + 1) (Beta[1/2, n1 + 1,
n2 + 1] - Beta[l1/(1 - l1), n1 + 1, n2 + 1]))] /. subst1),
Assumptions -> ... && x > 0]
Let us set $n=3$.Here the integrand reads:
\begin{equation}
{\mathfrak I}(\lambda_1,\lambda_2) =
|-2 \lambda_1+\lambda_2| |\lambda_1+\lambda_2-1| |2 \lambda_2-\lambda_1-1| \cdot
\prod\limits_{j=1}^3 (\lambda_j -\lambda_{j-1})^{x-1}
\end{equation}
Before we start we set $\lambda:= \lambda_1$ and $x = (T-n+1)/2$.
Now we have to consider three cases.
Firstly we have $\lambda \in (1/2,1) $ and then we have either $\lambda_2 \in (\lambda_1,(\lambda_1+1)/2)$ or $\lambda_2 \in ((\lambda_1+1)/2,1)$. It turns out that the integrals over $\lambda_2$ over both intervals are the same and their sum reads:
\begin{eqnarray}
\int\limits_{\lambda_1}^1 {\mathfrak I}(\lambda_1,\lambda_2) d\lambda_2=
\frac{4^{1-x} (1-\lambda )^{2 x} \lambda ^{x+1}}{x^2+x}-\frac{2^{1-2 x} (1-\lambda )^{2 x} \lambda
^x}{x^2+x}+\frac{2^{-2 x-1} (1-\lambda )^{2 x} \lambda ^{x-1}}{x+1}+\frac{9\ 2^{-2 x-1} (1-\lambda )^{2
x} \lambda ^{x+1}}{x+1}-\frac{3\ 4^{-x} (1-\lambda )^{2 x} \lambda ^x}{x+1} \quad (2a)
\end{eqnarray}
Secondly we have $\lambda \in (1/3,1/2) $ and then we have either $\lambda_2 \in (\lambda_1,1-\lambda_1)$ or $\lambda_2 \in (1-\lambda_1,(1+\lambda_1)/2)$ or $\lambda_2 \in ((1+\lambda_1)/2,2 \lambda_1)$ or $\lambda_2 \in (2 \lambda_1,1)$. Again, it turns out that the first and the fourth integral are equal and the second and the third are also equal but different from the previous one. Adding all four of them gives the following result:
\begin{eqnarray}
\int\limits_{\lambda_1}^1 {\mathfrak I}(\lambda_1,\lambda_2) d\lambda_2=
\frac{4^{1-x} (1-\lambda )^{2 x} \lambda ^{x+1}}{x^2+x}-\frac{8 (1-2 \lambda )^x \lambda ^{2
x+1}}{x^2+x}-\frac{2^{1-2 x} (1-\lambda )^{2 x} \lambda ^x}{x^2+x}+\frac{4 \left((1-2 \lambda ) \lambda
^2\right)^x}{x^2+x}+\frac{2^{-2 x-1} (1-\lambda )^{2 x} \lambda ^{x-1}}{x+1}+\frac{9\ 2^{-2 x-1}
(1-\lambda )^{2 x} \lambda ^{x+1}}{x+1}-\frac{3\ 4^{-x} (1-\lambda )^{2 x} \lambda ^x}{x+1} \quad (2b)
\end{eqnarray}
Thirdly we have $\lambda \in (0,1/3) $ and then we have either $\lambda_2 \in (\lambda_1,2 \lambda_1)$ or $\lambda_2 \in (2\lambda_1,(1+\lambda_1)/2)$ or $\lambda_2 \in ((1+\lambda_1)/2,1- \lambda_1)$ or $\lambda_2 \in (1 - \lambda_1,1)$. Again, it turns out that the first and the fourth integral are equal and the second and the third are also equal but different from the previous one. Adding all four of them gives the following result:
\begin{eqnarray}
\int\limits_{\lambda_1}^1 {\mathfrak I}(\lambda_1,\lambda_2) d\lambda_2=
\frac{2 (1-2 \lambda )^x \lambda ^{2 x}}{x^2+x}+\frac{4^{1-x} (1-\lambda )^{2 x} \lambda
^{x+1}}{x^2+x}-\frac{4 (1-2 \lambda )^x \lambda ^{2 x+1}}{x^2+x}-\frac{2^{1-2 x} (1-\lambda )^{2 x}
\lambda ^x}{x^2+x}-\frac{4 \lambda \left((1-2 \lambda ) \lambda ^2\right)^x}{x^2+x}+\frac{2 \left((1-2
\lambda ) \lambda ^2\right)^x}{x^2+x}+\frac{2^{-2 x-1} (1-\lambda )^{2 x} \lambda ^{x-1}}{x+1}+\frac{9\
2^{-2 x-1} (1-\lambda )^{2 x} \lambda ^{x+1}}{x+1}-\frac{3\ 4^{-x} (1-\lambda )^{2 x} \lambda ^x}{x+1} \quad (2c)
\end{eqnarray}
All what we need to do now is to integrate $(2c)$ over $\lambda_1\in(0,1/3)$ then integrate $(2b)$ over $\lambda_1\in(1/3,1/2)$ and then $(2a)$ over $\lambda_1\in(1/2,1)$ and add all the results together.
But this is simple. All the terms in the right hand sides contain incomplete beta functions of the form $B_{1/3}(,)$, $B_{1/2}(,)$, $B_{1}(,)$ or $B_{2/3}(,)$, $B_{1}(,)$, $B_{2}(,)$. It is easy to write a Mathematica script that replaces the respective expressions $\lambda^{\cdots}(1-\lambda)^{\cdots}$ and $\lambda^{\cdots}(1-2\lambda)^{\cdots}$ by the respective incomplete beta functions. We have done this
and miraculously all the incomplete beta functions disappeared leaving the complete beta functions only and then we obtained the following final result:
\begin{eqnarray}
&&\int\limits_0^1 \int\limits_{\lambda_1}^1 {\mathfrak I}(\lambda_1,\lambda_2) d\lambda_2 d\lambda_1=\\
&&\frac{2^{-2 x-1} (x B_1(x,2 x+1)-2 (3 x+2) B_1(x+1,2 x+1)+9 x B_1(x+2,2 x+1)+8 B_1(x+2,2 x+1)+4 B_1(2
x+1,x+1)-4 B_1(2 x+2,x+1))}{x (x+1)}=\\
&&\frac{9\ 2^{1-2 x} \Gamma (2 x) \Gamma (x+2)}{\Gamma (3 x+4)}=\\
&&\frac{3 \Gamma \left(\frac{T-2}{2}\right) \Gamma \left(\frac{T-1}{2}\right) \Gamma
\left(\frac{T}{2}\right)}{\sqrt{\pi } \Gamma \left(\frac{3 T}{2}\right)}
\end{eqnarray}
This finishes the proof. As always we provide Mathematica code that verifies all the partial results:
(*Integrating over l2 \in (l1,1)*)
{x} = RandomReal[{1, 10}, 1];
l1 = RandomReal[{1/2, 1}];
NIntegrate[
Abs[(2 l1 - l2) (l1 + l2 - 1)] Abs[-2 l2 + l1 +
1] l1^(x - 1) (l2 - l1)^(x - 1) (1 - l2)^(x - 1), {l2, l1, 1}]
(2^(-1 - 2 x) (1 - l1)^(2 x) l1^(-1 + x))/(1 + x) - (
3 4^-x (1 - l1)^(2 x) l1^x)/(1 + x) + (
9 2^(-1 - 2 x) (1 - l1)^(2 x) l1^(1 + x))/(1 + x) - (
2^(1 - 2 x) (1 - l1)^(2 x) l1^x)/(x + x^2) + (
4^(1 - x) (1 - l1)^(2 x) l1^(1 + x))/(x + x^2)
l1 = RandomReal[{1/3, 1/2}];
NIntegrate[
Abs[(2 l1 - l2) (l1 + l2 - 1)] Abs[-2 l2 + l1 +
1] l1^(x - 1) (l2 - l1)^(x - 1) (1 - l2)^(x - 1), {l2, l1, 1}]
(2^(-1 - 2 x) (1 - l1)^(2 x) l1^(-1 + x))/(1 + x) - (
3 4^-x (1 - l1)^(2 x) l1^x)/(1 + x) + (
9 2^(-1 - 2 x) (1 - l1)^(2 x) l1^(1 + x))/(1 + x) - (
2^(1 - 2 x) (1 - l1)^(2 x) l1^x)/(x + x^2) + (
4^(1 - x) (1 - l1)^(2 x) l1^(1 + x))/(x + x^2) - (
8 (1 - 2 l1)^x l1^(1 + 2 x))/(x + x^2) + (4 ((1 - 2 l1) l1^2)^x)/(
x + x^2)
l1 = RandomReal[{0, 1/3}];
NIntegrate[
Abs[(2 l1 - l2) (l1 + l2 - 1)] Abs[-2 l2 + l1 +
1] l1^(x - 1) (l2 - l1)^(x - 1) (1 - l2)^(x - 1), {l2, l1, 1}]
(2^(-1 - 2 x) (1 - l1)^(2 x) l1^(-1 + x))/(1 + x) - (
3 4^-x (1 - l1)^(2 x) l1^x)/(1 + x) + (
9 2^(-1 - 2 x) (1 - l1)^(2 x) l1^(1 + x))/(1 + x) - (
2^(1 - 2 x) (1 - l1)^(2 x) l1^x)/(x + x^2) + (
2 (1 - 2 l1)^x l1^(2 x))/(x + x^2) + (
4^(1 - x) (1 - l1)^(2 x) l1^(1 + x))/(x + x^2) - (
4 (1 - 2 l1)^x l1^(1 + 2 x))/(x + x^2) + (2 ((1 - 2 l1) l1^2)^x)/(
x + x^2) - (4 l1 ((1 - 2 l1) l1^2)^x)/(x + x^2)
(Integrating over l1 \in (0,1) )
NIntegrate[
Abs[(2 l1 - l2) (l1 + l2 - 1)] Abs[-2 l2 + l1 +
1] l1^(x - 1) (l2 - l1)^(x - 1) (1 - l2)^(x - 1), {l1, 0,
1/3}, {l2, l1, 1}]
(2^(-1 - 2 x) Beta[1/3, x, 1 + 2 x])/(1 + x) - (
3 4^-x Beta[1/3, 1 + x, 1 + 2 x])/(1 + x) - (
2^(1 - 2 x) Beta[1/3, 1 + x, 1 + 2 x])/(x + x^2) + (
9 2^(-1 - 2 x) Beta[1/3, 2 + x, 1 + 2 x])/(1 + x) + (
4^(1 - x) Beta[1/3, 2 + x, 1 + 2 x])/(x + x^2) + (
2^(1 - 2 x) Beta[2/3, 1 + 2 x, 1 + x])/(x + x^2) - (
2^(1 - 2 x) Beta[2/3, 2 + 2 x, 1 + x])/(x + x^2)
NIntegrate[
Abs[(2 l1 - l2) (l1 + l2 - 1)] Abs[-2 l2 + l1 +
1] l1^(x - 1) (l2 - l1)^(x - 1) (1 - l2)^(x - 1), {l1, 1/3,
1/2}, {l2, l1, 1}]
1/(x (1 + x)) 2^(-1 -
2 x) (-x Beta[1/3, x, 1 + 2 x] + (4 + 6 x) Beta[1/3, 1 + x,
1 + 2 x] - 8 Beta[1/3, 2 + x, 1 + 2 x] -
9 x Beta[1/3, 2 + x, 1 + 2 x] + x Beta[1/2, x, 1 + 2 x] -
4 Beta[1/2, 1 + x, 1 + 2 x] - 6 x Beta[1/2, 1 + x, 1 + 2 x] +
8 Beta[1/2, 2 + x, 1 + 2 x] + 9 x Beta[1/2, 2 + x, 1 + 2 x] -
4 Beta[2/3, 1 + 2 x, 1 + x] + 4 Beta[2/3, 2 + 2 x, 1 + x] +
4 Beta[1, 1 + 2 x, 1 + x] - 4 Beta[1, 2 + 2 x, 1 + x])
NIntegrate[
Abs[(2 l1 - l2) (l1 + l2 - 1)] Abs[-2 l2 + l1 +
1] l1^(x - 1) (l2 - l1)^(x - 1) (1 - l2)^(x - 1), {l1, 1/2,
1}, {l2, l1, 1}]
1/(x (1 + x)) 2^(-1 -
2 x) (-x Beta[1/2, x, 1 + 2 x] + (4 + 6 x) Beta[1/2, 1 + x,
1 + 2 x] - 8 Beta[1/2, 2 + x, 1 + 2 x] -
9 x Beta[1/2, 2 + x, 1 + 2 x] + x Beta[1, x, 1 + 2 x] -
4 Beta[1, 1 + x, 1 + 2 x] - 6 x Beta[1, 1 + x, 1 + 2 x] +
8 Beta[1, 2 + x, 1 + 2 x] + 9 x Beta[1, 2 + x, 1 + 2 x])
(The whole thing.)
NIntegrate[
Abs[(2 l1 - l2) (l1 + l2 - 1)] Abs[-2 l2 + l1 +
1] l1^(x - 1) (l2 - l1)^(x - 1) (1 - l2)^(x - 1), {l1, 0, 1}, {l2,
l1, 1}]
1/(x (1 + x)) 2^(-1 -
2 x) (x Beta[1, x, 1 + 2 x] - 2 (2 + 3 x) Beta[1, 1 + x, 1 + 2 x] +
8 Beta[1, 2 + x, 1 + 2 x] + 9 x Beta[1, 2 + x, 1 + 2 x] +
4 Beta[1, 1 + 2 x, 1 + x] - 4 Beta[1, 2 + 2 x, 1 + x])
(9 2^(1 - 2 x) Gamma[2 x] Gamma[2 + x])/Gamma[4 + 3 x]
(3 Gamma[1/2 (-2 + T)] Gamma[1/2 (-1 + T)] Gamma[T/2])/(
Sqrt[[Pi]] Gamma[(3 T)/2]) /. T :> 2 x + 2
