Note: the Jacobian here is the row vector, or in other words, the $1 \times n$ matrix $$Df({\bf{x}} )=\frac{1}{\|{\bf{x}}\|}{\bf{x}}^{T} \quad \quad \left({\bf x} \in \mathbb{R}^n \setminus \{ {\bf 0} \} \right).$$
By definition of the standard inner product on $\mathbb{R}^n$, we have
$$Df({\bf x}){\bf h}=\frac{1}{\|{\bf{x}}\|}{\bf{x}}^{T}{\bf h}=\frac{1}{\|{\bf{x}}\|}\left( {\bf h}\cdot {\bf{x}}\right) \in \mathbb{R} \;\text{ whenever } \;{\bf x} \in \mathbb{R}^n \setminus \{ {\bf 0} \}.$$
Let ${\bf x} \in \mathbb{R}^n \setminus \{ {\bf 0} \}$, and consider $A=\|{\bf x}\|^{-1}{\bf x}^T$. Then we apparently have
\begin{aligned}\lim_{{\bf h} \to {\bf 0}} &\frac{\| f({\bf{x}}+{\bf h}) - f({\bf{x}})-A{\bf h}\|}{\| {\bf h}\|}=\lim_{{\bf h} \to {\bf 0}} \frac{ \left\|{\displaystyle \sqrt{({\bf{x}}+{\bf h})^T({\bf x}+{\bf h})}}-{\displaystyle \sqrt{{\bf x}^T{\bf x}}}- \| {\bf x}\|^{-1}{\bf x}^{T}{\bf h}\right\| }{\| {\bf h}\|}
\\&\quad \quad\quad \quad\quad\quad\quad\quad\quad \quad \;\;\, = \lim_{{\bf h} \to {\bf 0}} \frac{ \left\|{\displaystyle \sqrt{{\bf x}^T{\bf x}+2{\bf x}^T{\bf h}+{\bf h}^T{\bf h}}}-{\displaystyle \sqrt{{\bf x}^T{\bf x}}}- \| {\bf x}\|^{-1}{\bf x}^{T}{\bf h}\right\| }{\| {\bf h}\|}
\\&\quad \quad\quad \quad\quad \quad =\lim_{{\bf h} \to {\bf 0}} \frac{ \left\| 2{\bf x}^T{\bf h}+{\bf h}^T{\bf h}- \left({\displaystyle \sqrt{{\bf x}^T{\bf x}+2{\bf x}^T{\bf h}+{\bf h}^T{\bf h}}}+{\displaystyle \sqrt{{\bf x}^T{\bf x}}} \right)\| {\bf x}\|^{-1}{\bf x}^{T}{\bf h}\right\| }{\left({\displaystyle \sqrt{{\bf x}^T{\bf x}+2{\bf x}^T{\bf h}+{\bf h}^T{\bf h}}}+{\displaystyle \sqrt{{\bf x}^T{\bf x}} }\right)\|{\bf h}\|}
\\&\quad \quad\quad \quad\quad \quad =\lim_{{\bf h} \to {\bf 0}} \frac{ \left\| 2{\bf x}^T+{\bf h}^T- \left({\displaystyle \sqrt{{\bf x}^T{\bf x}+2{\bf x}^T{\bf h}+{\bf h}^T{\bf h}}}+{\displaystyle \sqrt{{\bf x}^T{\bf x}}} \right)\| {\bf x}\|^{-1}{\bf x}^{T}\right\| \|{\bf h}\|}{\left({\displaystyle \sqrt{{\bf x}^T{\bf x}+2{\bf x}^T{\bf h}+{\bf h}^T{\bf h}}}+{\displaystyle \sqrt{{\bf x}^T{\bf x}}} \right)\|{\bf h}\|}
\\&\quad \quad\quad \quad\quad \quad =\lim_{{\bf h} \to {\bf 0}} \frac{ \left\| 2{\bf x}^T+{\bf h}^T- \left({\displaystyle \sqrt{{\bf x}^T{\bf x}+2{\bf x}^T{\bf h}+{\bf h}^T{\bf h}}}+{\displaystyle \sqrt{{\bf x}^T{\bf x}}} \right)\| {\bf x}\|^{-1}{\bf x}^{T}\right\| }{\left({\displaystyle \sqrt{{\bf x}^T{\bf x}+2{\bf x}^T{\bf h}+{\bf h}^T{\bf h}}}+{\displaystyle \sqrt{{\bf x}^T{\bf x}}} \right)}
\\&\quad \quad\quad \quad\quad \quad =\frac{ \left\| 2{\bf x}^T- \left({\displaystyle \sqrt{{\bf x}^T{\bf x}}}+{\displaystyle \sqrt{{\bf x}^T{\bf x}}} \right)\| {\bf x}\|^{-1}{\bf x}^{T}\right\| }{\left({\displaystyle \sqrt{{\bf x}^T{\bf x}}}+{\displaystyle \sqrt{{\bf x}^T{\bf x}}} \right)}
\\&\quad \quad\quad \quad\quad \quad =\frac{ \| 2{\bf x}^T- 2\| {\bf x}\|\| {\bf x}\|^{-1}{\bf x}^{T}\| }{2\| {\bf x}\|}
\\&\quad \quad\quad \quad\quad \quad =\frac{ \| 2{\bf x}^T- 2{\bf x}^{T}\| }{2\| {\bf x}\|}=\frac{ \|{\bf 0}\| }{2\| {\bf x}\|}=0.
\end{aligned}
Thus by definition $9.11$ of Baby Rudin, $f$ is differentiable in $\mathbb{R}^n \setminus \{ {\bf 0} \}$ and $Df({\bf{x}} )=A$.