It is well-known that $$10\int_0^{\ln \phi} t^2\coth t dt =\frac{5}{2}\sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^3\binom{2n}{n}}=\zeta(3),$$ where $\phi=(1+\sqrt{5})/2$ (see Alfred van der Poorten, "A proof that Euler missed"). Let $$f(r,s)=\int_0^{s/2}t^{r-1}\coth t dt.$$ In particular, $$2f(3,s)=2\int_0^{s/2}t^2\coth t dt =\frac{s^3}{12}+\frac{s^2}{2}\log(1-e^{-s})-s\mbox{Li}_2(e^{-s})-\mbox{Li}_3(e^{-s}) +\zeta(3),$$ where $\mbox{Li}_k(x)$ is the $k$-th polylogarithm. Indeed, one can obtain similar expressions for all $\zeta(2n+1)$. Define $F(s)_3=2f(3,s)-\zeta(3)$. Since $F(0)_3=-\zeta(3)$ and $F(s)_3$ increases in $s$ without bound, there is a (unique) zero of $F(s)_3$.
Question 1: Is there a simple representation of $F(s)_3$ in terms of elementary, perhaps hyperbolic, functions?
Question 2: Can anyone see how to solve $F(s)_3=0$?