The following inequality appears in the proof of this:
$$ P(\Gamma_\epsilon \triangle \Lambda) \leq P(\Lambda - G) + P(G\triangle \Gamma_\epsilon). $$
Why is it true? I know it uses subadditivity, but I'm not sure that the last equality in $\Lambda \triangle \Gamma_\epsilon = (\Lambda -G \cup G)\triangle \Gamma_\epsilon =(\Lambda- G) \cup (G\triangle \Gamma_\epsilon)$ is valid.
EDIT:
The details are as follow. There is a theorem that states: "Let $\mathcal{F}_0 \subset \mathcal{F}$ be a field and $\Lambda\in \sigma(\mathcal{F}_0)$. For any $\epsilon>0$, there exists $\Gamma_\epsilon \in\mathcal{F}_0$ such that $P(\Lambda \triangle \Gamma_\epsilon)< \epsilon$." The proof goes to defining the set $\mathcal{G} = \lbrace \Lambda\in\mathcal{F} : {\rm for\;all} \;\epsilon>0\; {\rm there\;is}\;\Gamma_\epsilon\in \mathcal{F}_0 \;{\rm such\;that}\; P(\Lambda\triangle \Gamma_\epsilon < \epsilon) \rbrace$. Then the (part of) proof, let $\epsilon>0$ and let $\Lambda_1\subset\Lambda_2\subset\dots \in \mathcal{G}$. Choose $n$ such that $P(\Lambda - G)< \epsilon /2$, with $G=\cup_{j=1}^n \Lambda_j$. For $j=1,\dots,n$ choose $\Gamma_j \in\mathcal{F}_0$ such that $P(\Lambda_j \triangle \Gamma_j)<\epsilon/2^{2j+1}$. Then set $\Gamma_\epsilon = \cup_{j=1}^n \Gamma_j$. Note that $\Gamma_\epsilon \in\mathcal{F}_0$ since $\mathcal{F}_0$ is a field, and $P(\Gamma_\epsilon \triangle \Lambda) \leq P(\Lambda - G) + P(G\triangle \Gamma_\epsilon)$ (...)