Lemma: Let $f:X \to Y$ and $C$ be some collection of subsets of $Y$. Then $$f^{-1}[\sigma(C)]=\sigma(f^{-1}[C]).$$
Let $\mathcal O$ be the standard topology of $\mathbb R$. Then $\sigma(\mathcal O)$ is the Borel $\sigma$-algebra of $\mathbb R$. Let $\mathcal C(E)$ the space of all all continuous functionals on $E$. Let
$$
f^{-1}[\sigma(\mathcal O)] := \{f^{-1}(B) \mid B \in \sigma(\mathcal O)\} \quad \forall f \in \mathcal C(E).
$$
Then $\mathcal A$ is the $\sigma$-algebra generated by
\begin{align}
\bigcup_{f \in \mathcal C(E)} f^{-1}[\sigma(\mathcal O)].
\end{align}
We have
\begin{align}
\mathcal A &= \sigma \left ( \bigcup_{f \in \mathcal C(E)} f^{-1}[\sigma( \mathcal O )] \right ) \\
&= \sigma \left ( \bigcup_{f \in \mathcal C(E)} \sigma( f^{-1}[\mathcal O] ) \right ) \quad \text{by our Lemma} \\
& \subseteq \sigma \left ( \sigma \left ( \bigcup_{f \in \mathcal C(E)} f^{-1}[\mathcal O] \right) \right ) \\
&= \sigma \left ( \bigcup_{f \in \mathcal C(E)} f^{-1}[\mathcal O] \right) \\
&\subseteq \mathcal B(E).
\end{align}
Because metric space is perfectly normal. For each closed subset $F$ of $E$, there is a continuous functional $f:E \to [0, 1]$ such that $F =f^{-1}(0)$. This implies $\mathcal A$ contains all closed and thus all open subsets of $E$. This completes the proof.