This is taken from an exercise problem in Dummit and Foote's:
Describe briefly the ring structure of $\mathbb Z[x,y]/(x^2,y^2,2)$ and show that $\alpha^2=1$ or $0$ for every $\alpha$ in the ring.
I proceeded as follows:
Let $\rm S:=\mathbb Z[x,y]/\rm {(x^2,y^2,2)}$.
$x^2\in (x^2,y^2,2):=I\implies x^{r+2}\in I\quad\forall r\in \mathbb Z^+$ and similarly for higher powers of $y$.
Let $\rm \overline{f(x,y)}=\rm \overline{a_n(x)y^n+a_{n-1}(x)y^{n-1}+\cdots+a_1(x)y+a_0(x)}\in S$
$\rm \overline{f(x,y)}=\rm {f(x,y)+I}=\rm \color{blue}{a_0(x)}+\rm \color{green}{a_1(x)y}+I=\rm \color{blue}{a+bx}+\rm \color{green}{(c+dx)y}+I\in\rm \{\overline{p+qx+ry+sxy}:p,q,r,s\in \mathbb Z_2\}=:\rm T$
This is because $\rm I$ absorbs higher powers of $\rm x$ and $\rm y$.
It follows that $\rm S\subset \rm T$.
The other direction $\rm T\subset \rm S$ is obvious. It follows that $\rm T=\rm S$.
Let $\rm {\alpha= p+qx+ry+sxy+I\in S\alpha^2=(p+qx)^2+(ry+sxy)^2+2(p+qx)(rs+sxy)+I=p^2+I}$.
$\rm {\therefore\quad \alpha^2=1\iff p=1\pmod 2}$ and $\rm {\alpha^2=0\iff p=0 \pmod 2}$.
Is this correct? Thanks.
I tried to do it using the third isomorphism theorem also as follows:
$\rm {S\simeq\frac{\mathbb Z[x,y]/{(2,x)}}{(x^2,y^2,2)/{(2,x)}}}$. I know that the numerator is isomorphic to $\mathbb Z_2[y]$ and this is because the homomorphism (from $\rm \mathbb Z[x,y]$ to $\rm \mathbb Z_2[y]$)) $\rm {x\mapsto 0, z\mapsto z\pmod 2 \quad \forall z\in \mathbb Z, y\mapsto y}$ has kernel $\rm {(2,x).(2,x)\subset \ker}$ is obvious. For the other direction, let $\rm {g(x,y)=b_m(x)y^m+b_{m-1}(x)y^{m-1}+\cdots+b_1(x)y+b_0(x)\in \ker}$, it follows by applying the homomorphism on both side that $\rm {0=(b_m(0)\pmod 2)y^m+(b_{m-1}(0)\pmod 2)y^{m-1}+\cdots+(b_1(0)\pmod 2)y+b_0(0)\pmod 2}$
It follows that $b_r(0)=0$ for every $r\in \{0,1,...,m\}$. Hence $x|f(x,y)$ by remainder theorem. It follows that $f(x,y)\in (x)\subset (2,x)\implies \ker\subset (2,x)$.
Using the same map as above, it follows that $\rm {(x^2,y^2,2)/(2,x)}$ is isomorphic to $\rm {(y^2)}$ (an ideal of $\rm \mathbb Z_2[y]$). I am stuck here in concluding formally that ${\rm S\simeq \frac{\mathbb Z_2[y]}{(y^2)}}$.