$\cdot $ Calculate : $\text{Res}((5z^{9}+z^{11})\text{cos}(\frac{1}{z^3}),0)$
First, the singularity at $z_0=0$ is irremovable because the lim of $\text{cos}(\frac{1}{z^3})$ doesn't exist.
So the only way to calculate $\text{Res}((5z^{9}+z^{11})\text{cos}(\frac{1}{z^3}),0)$ would be by the Laurent series, $$(5z^{9}+z^{11})\text{cos}(\frac{1}{z^3})=\Bigg(5z^{9}+z^{11}\Bigg)\Bigg(1-\frac{1}{2z^6}+\frac{1}{4!z^{12}}+\sum_{n=3}^{\infty}\frac{(-1)^n}{2n!}\bigg(\frac{1}{z^3}\bigg)^{2n}\Bigg)$$
But I don't see how that would be.