I recently encounter an integral problem consisting the integral $$ I:=\int_{0}^{\frac{\pi}{2}} y \ln (1+\cos y) d y, $$ I tried to tackle $I$ using the double angle formula and the result of $$ \int_{0}^{\frac{\pi}{4}} y\ln (\cos y) d y $$
\begin{aligned} I &=\int_{0}^{\frac{\pi}{2}} y \ln \left(2 \cos ^{2} \frac{y}{2}\right) d y \\ &=\ln 2 \int_{0}^{\frac{\pi}{2}} y d y+2 \int_{0}^{\frac{\pi}{2}} y \ln \left(\cos \frac{y}{2}\right) d y \\ &=\frac{\pi^{2}}{8} \ln 2+8 \int_{0}^{\frac{\pi}{4}} y \ln (\cos y) d y \end{aligned}
By my post,$$\int_{0}^{\frac{\pi}{4}} y\ln (\cos y) d y = \frac{\pi G}{8}-\frac{\pi^{2}}{32} \ln 2-\frac{21}{128} \zeta(3) $$
Now we can conclude that $$ \boxed{\int_{0}^{\frac{\pi}{2}} y \ln (1+\cos y) d y = \pi G-\frac{21}{16} \zeta(3)-\frac{\pi^{2}}{8} \ln 2} $$
Suggestions for improvement and alternative methods are warmly welcome!