Many calculus or analysis books write improper integrals $\int_{a}^{b} f(x)dx$, where $f(x)$ is a function such that $\lim_{x\to a} f(x)=+\infty$ or $\lim_{x\to a} f(x)=-\infty$ or $\lim_{x\to b} f(x)=+\infty$ or $\lim_{x\to b} f(x)=-\infty$.
But many calculus or analysis books don't write improper integrals $\int_{a}^{b} f(x)dx$, where $f(x)$ has a dicontinuity of the second kind at $x=a$ or $x=b$.
Why?
So, I am interested in an improper integral $\int_{a}^{b} f(x)dx$, where $f(x)$ has a dicontinuity of the second kind at $x=a$ or $x=b$.
$\frac{1}{x^\alpha} \sin{\frac{1}{x}}$ has a discontinuity of the second kind at $x=0$.
Find the maximum value $\alpha$ for which $\int_{0}^{\frac{1}{\pi}} \frac{1}{x^\alpha} \sin{\frac{1}{x}}dx$ converges.
$\int_{0}^{\frac{1}{\pi}} \frac{1}{x^2} \sin{\frac{1}{x}}dx$ diverges.
$\int_{0}^{\frac{1}{\pi}} \frac{1}{x^1} \sin{\frac{1}{x}}dx$ converges.
$\int_{0}^{\frac{1}{\pi}} \frac{1}{x^{1.5}} \sin{\frac{1}{x}}dx$ converges.