Letting $x\mapsto \frac{\pi}{2} -x$ converts the integral $\displaystyle I=\frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} \tan 2 x \ln (\tan x) d x \tag*{} $ Using the identity $ \displaystyle \tan x=\frac{\sin 2 x}{1+\cos 2 x} $ , we get $$\displaystyle I=\frac{\pi}{4} \int_{0}^{\frac{\pi}{2}}\left[\frac{\sin 2 x}{\cos 2 x} \ln (\sin 2 x)-\frac{\sin 2 x}{\cos 2 x} \ln (1+\cos 2 x)\right] d x \tag*{} $$ Letting $2x\mapsto x$ yields $\displaystyle I=\frac{\pi}{8}\left[\underbrace{\int_{0}^{\pi} \frac{\sin x}{\cos x} \ln (\sin x)}_{J} d x-\underbrace{\int_{0}^{\pi} \frac{\sin x}{\cos x} \ln (1+\cos x) d x}_{K}\right]\tag*{} $ As $ \displaystyle J \stackrel{x \rightarrow \pi-x}{=}-J \Rightarrow J=0 $ , therefore $\displaystyle I=-\frac{\pi}{8} K. $
By my post , $\displaystyle \begin{aligned}K \stackrel{y=\cos x}{=}& \int_{-1}^{1} \frac{\ln (1+y)}{y} d y=\frac{\pi^{2}}{4}\end{aligned}\tag*{} $ Now we can conclude that $\displaystyle \boxed{I=-\frac{\pi^{3}}{32}}\tag*{} $
Request for elegant solutions. Your suggestion and alternative methods are warmly welcome!