$\newcommand{\d}{\mathrm{d}}$The integral can be reduced, as Eyeballfrog says, to showing: $$\int_0^\infty\frac{u}{e^u-e^{-u}}\d u=\frac{\pi^2}{8}$$
Begin geometrically: $$\int_0^\infty\frac{u}{1-e^{-2u}}\cdot e^{-u}\d u=\sum_{n\ge0}\int_0^\infty u\cdot e^{-(2n+1)u}\d u\overset{u\mapsto(2n+1)u}{=}\sum_{n\ge0}\frac{1}{(2n+1)^2}\int_0^\infty u\cdot e^{-u}\d u$$
It is easy to show by integration by parts, or by knowledge of the Gamma function, that: $$\int_0^\infty u\cdot e^{-u}\d u=1$$So we are left with: $$\sum_{n\ge0}\frac{1}{(2n+1)^2}$$
We know that: $$\zeta(2)=\sum_{n\ge1}\frac{1}{n^2}=\frac{\pi^2}{6}$$Some algebra gives: $$\underset{\text{sum of all squares}}{\underbrace{\zeta(2)}}-\underset{\text{sum of even squares}}{\underbrace{\frac{1}{4}\zeta(2)}}=\underset{\text{sum of odd squares}}{\underbrace{\sum_{n\ge0}\frac{1}{(2n+1)^2}}}$$
Giving: $$\int_0^\infty\frac{u}{e^u-e^{-u}}\d u=\frac{3}{4}\cdot\frac{\pi^2}{6}=\frac{\pi^2}{8}$$As desired.