The problem states that
$$bc = \alpha^2s, \; \; ca = \beta^2t, \; \; ab = \gamma^2u \tag{1}\label{eq1A}$$
Multiplying all $3$ values together, then taking the square root & dividing to get $\sqrt{stu}$ by itself gives
$$\begin{equation}\begin{aligned}
(abc)^2 & = (\alpha\beta\gamma)^2(stu) \\
\lvert abc \rvert & = \lvert \alpha\beta\gamma \rvert \sqrt{stu} \\
\left\lvert \frac{abc}{\alpha\beta\gamma} \right\rvert & = \sqrt{stu}
\end{aligned}\end{equation}\tag{2}\label{eq2A}$$
Since a square root of an integer being a rational number means that integer must be a perfect square, this means there's a positive integer $k$ such that
$$stu = k^2 \tag{3}\label{eq3A}$$
Each prime factor of $s$ must divide $k$, so the RHS has two factors of that prime factor. Since $s$ is square-free, this means those extra prime factors must be in $t$ or $u$. Thus, for some integers $d$, $e$, $f$ and $g$, we have
$$s = de, \; \; t = df, \; \; u = eg \tag{4}\label{eq4A}$$
Also, $s \mid k \; \to \; k = sm$ for some non-zero integer $m$. Using this and \eqref{eq4A} in \eqref{eq3A} gives
$$\begin{equation}\begin{aligned}
(de)(df)(eg) & = (sm)^2 \\
d^2(e^2)(fg) & = (de)^2(m^2) \\
fg & = m^2
\end{aligned}\end{equation}\tag{5}\label{eq5A}$$
Since $t$ and $u$ are square-free, then \eqref{eq4A} shows $f$ and $g$ are also square-free. Thus, their product being a square means they must be equal to each other, i.e.,
$$f = g \tag{6}\label{eq6A}$$
Using \eqref{eq4A} and \eqref{eq6A} in your result for $A$ (note we could also get this from \eqref{eq2A} by dividing the LHS by $\frac{bc}{\alpha^2}$ and the RHS by $s$), along with adding $\pm$ since $A$ depends on the signs of various values (though, if $\alpha$, $\beta$ and $\gamma$ are positive, then $\operatorname{sign}(A) = \operatorname{sign}(a)$), gives
$$\begin{equation}\begin{aligned}
A & = \pm \sqrt{\frac{ut}{s}} \\
& = \pm \sqrt{\frac{(ef)(df)}{de}} \\
& = \pm \sqrt{f^2} \\
& = \pm \lvert f \rvert
\end{aligned}\end{equation}\tag{7}\label{eq7A}$$
Similarly, we can show (I'll leave determining the details to you) that
$$B = \pm\lvert e \rvert, \; \; C = \pm\lvert d \rvert \tag{8}\label{eq8A}$$
This confirms $A$, $B$ and $C$ are all integers and, from \eqref{eq4A}, they're all square-free. Also from \eqref{eq4A}, since $s = de$ is square-free, this means $\gcd(d,e) = 1$, plus $t = df$ being square-free means $\gcd(d,f) = 1$. Similarly, $u = ef$ with $u$ being square-free means $\gcd(e,f) = 1$. This shows $A$, $B$ and $C$ are also pairwise relatively prime to each other.