I seem to be stuck defining an alternating sequence of terms in this series because $f^{(0)}(x)=f(x)$ is positive, as well as $f'(x)$, but then every other term starting with $f''(x)$ is negative. How can I define $f^{(n)}(x)$ given this?
\begin{array}{ll} f(x)=x^{\frac{1}{2}} & f(1)=1 \\ f'(x)=\frac{1}{2}\cdot x^{-\frac{1}{2}} & f'(1)=\frac{1}{2} \\ f''(x)=(-1)^1\cdot\left(\frac{1}{2}\right)^{2}\cdot x^{-\frac{3}{2}} & f''(1)=(-1)^1\cdot\left(\frac{1}{2}\right)^{2} \\ f'''(x)=(-1)^2\cdot 3\cdot\left(\frac{1}{2}\right)^{3}\cdot x^{-\frac{5}{2}} & f'''(1)=(-1)^2\cdot3\cdot\left(\frac{1}{2}\right)^{3} \\ f^{(4)}(x)=(-1)^3\cdot3\cdot 5\cdot\left(\frac{1}{2}\right)^{4}\cdot x^{-\frac{7}{2}} & f^{(4)}(1)=(-1)^3\cdot3\cdot 5\cdot\left(\frac{1}{2}\right)^{4} \\ f^{(n)}(x)=(-1)^{n-1}\left(\frac{1}{2}\right)^{n}\cdot x^{\frac{1-2n}{2}} & f^{(n)}(1)=(-1)^{n-1}\left(\frac{1}{2}\right)^{n} \end{array}
I thought I had the right answer until I realized that I'd be defining $f(x)$ to be negative.