As I understand Pascal's identity is defined as
$$\binom{n}{k} = \binom{n - 1}{k - 1} + \binom{n - 1}{k}$$
Just as an exercise I decided to prove this identity. Here is my solution:
$$ \begin{align*} \binom{n - 1}{k - 1} + \binom{n - 1}{k} = \dfrac{(n-1)!}{(k-1)!(n-1-(k-1))!} + \dfrac{(n-1)!}{k!(n - 1 - k)!} = \\ \dfrac{(n-1)!}{(k-1)!(n-1-k+1)!} + \dfrac{(n-1)!}{k!(n-(k+1))!} = \\ \dfrac{(n-1)!}{(k-1)!(n-k)!} + \dfrac{(n-1)!}{k!(n - (k+1))!} = \\ \dfrac{(n - 1)!}{(k-1)!(n-k)(n-(k+1))!} + \dfrac{(n-1)!}{k(k-1)!(n-(k+1))!} = \\ \dfrac{k(n-1)! + (n-k)(n-1)!}{k(k-1)!(n-k)(n-(k+1))!} = \dfrac{(n-1)!(k+n-k)}{k!(n-k)!} = \\ \dfrac{n(n-1)!}{k!(n-k)!} = \dfrac{n!}{k!(n-k)!} = \binom{n}{k} \end{align*} $$ Given that I've just started learning about this identity I just wanted to make sure that my solution is correct. Is it right?