I am struggling with this integral:
$\displaystyle \int _{0}^{\frac{\pi }{2}}\frac{\ln(\tan x)}{1-\tan x+\tan^{2} x}\mathrm{d} x$
What I tried so far:
$\displaystyle \int _{0}^{\frac{\pi }{2}}\frac{\ln(\tan x)}{1-\tan x+\tan^{2} x}\mathrm{d} x$ $\displaystyle =\int _{0}^{\frac{\pi }{2}}\frac{\cos^{2} x\ln(\tan x)}{1-\sin x\cos x}\mathrm{d} x$ $\displaystyle =\int _{0}^{\frac{\pi }{2}}\frac{-\sin^{2} x\ln(\tan x)}{1-\sin x\cos x}\mathrm{d} x$ $\displaystyle =\frac{1}{2}\int _{0}^{\frac{\pi }{2}}\frac{\cos 2x\ln(\tan x)}{1-\sin x\cos x}\mathrm{d} x$
The answer should come out to be $\dfrac{-7\pi^2}{72}$.
Any help will be appreciated.