Looking at a theorem of Chebyshev, I noticed that $$\sum_{n=0}^{\infty} \sum_{p_k < n} \frac{(\log p_k)^n}{n!} = 2 + 3 + ...+ p_k.$$
Proof. Letting $x = \log p_k$ and writing out the expansion of $e^{x}$ we get
$\lim\limits_{n\to\infty}\bigl[1 + \log 2 + \frac{\log (2)^2}{2} + \frac{\log(2)^3}{3!} + ... + \frac{\log(2)^n}{n!} \bigr]= 2;$
$\lim\limits_{n\to\infty}\bigl[1 + \log 3 + \frac{\log(3)^2}{2} + \frac{\log(3)^3}{3!} + ... + \frac{\log(3)^n}{n!} \bigr] = 3;$
$\lim\limits_{n\to\infty}\bigl[1 + \log 5 + \frac{\log(5)^2}{2} + \frac{\log(5)^3}{3!} +...+ \frac{\log(5)^n}{n!} \bigr] = 5;$
$\hspace{5cm}\vdots$
$\lim\limits_{n\to\infty}\bigl[1 + \log p_k + \frac{\log(p_k)^2}{2} + \frac{\log(p_k)^3}{3!} +...+ \frac{\log(p_k)^n}{n!} \bigr] = p_k $
The sum (from columns) is
$$S = k + \sum \log p_k + \sum (\log p_k)^2/2 + \sum (\log p_k)^3/6 +... + \sum (\log p_k)^n/n! = \sum p_k.$$
My question is: whether the above is correct?