Let $i: C \subset \mathbb{P}^2$ be a nonsingular curve of degree $d$ and genus $g$. There is a conormal sequence $0 \to i^* \mathcal{O}(-d) \to i^* \Omega^1_{\mathbb{P}^2} \to \Omega^1_{C} \to 0.$ Thus, we have $$0 \to H^0 (C, i^* \mathcal{O}(-d)) \to0\to H^0(C, i^* \Omega^1_{\mathbb{P}^2}) \to H^0(C, \Omega^1_{\mathbb{P}^2}) \to H^1(C, i^* \mathcal{O}(-d)) \to H^1(C, i^* \Omega^1_{\mathbb{P}^2}) \to H^1(C, \Omega^1_{C}) \to 0.$$
We know that $H^1(C, \Omega^1_{C})$ is one-dimensional by the Serre duality. Let's compute $H^1(C, i^* \Omega^1_{\mathbb{P}^2})$. Using the Euler sequence we get $ 0 \to i^* \Omega^1_{\mathbb{P}^2} \to i^* \mathcal{O}(-1)^{\oplus 3} \to \mathcal{O}_C \to 0$ and writing a long exact sequence we get $0 \to k \to H^1(C, i^* \Omega^1_{\mathbb{P}^2}) \to H^1(C, i^* \mathcal{O}(-1)^{\oplus 3}) \to 0$. Here I'm not sure how to compute first cohomology of $i^* \mathcal{O}(-1)$ even though I suspect it's zero. The same for $i^* \mathcal{O}(-d)$; I don't see how to compute its cohomology. How can I do this?
And a general question: suppose I have a hypersurface $j: Y \to X$ and a sheaf $F$ on $X$. Is is possible to compute cohomology of $j^* F$ knowing cohomology of $F$?