First, let's analyze your attempt.
This example has the same problem:
$$
\begin{align}
\lim_{x\to0}\frac{(1+x)-1}{x}
&=\lim_{x\to0}\left(\frac{1+x}{x}-\frac{1}{x}\right)\\
&=\lim_{x\to0}\left(\frac{1}{x}-\frac{1}{x}\right)\\[6pt]
&=0
\end{align}
$$
It is not permitted to take the limit of a piece of an expression before the other parts.
On the other hand, since we are subtracting exact equals, we can do
$$
\begin{align}
\lim_{x\to0}\frac{(1+x)-1}{x}
&=\lim_{x\to0}\left(\frac{1+x}{x}-\frac{1}{x}\right)\\
&=\lim_{x\to0}\left(\frac{x}{x}\right)\\[6pt]
&=1
\end{align}
$$
Now, let's evaluate the limit is a couple of ways.
Without using calculus, we cam work from this answer and subtract $(10)$ from $(9)$ to get
$$
\lim_{x\to0}\frac{\tan(x)-x}{x^3}=\frac13
$$
Divide by
$$
\lim_{x\to0}\frac{\sin(x)}{x}=1
$$
(proven geometrically here) to get
$$
\lim_{x\to0}\frac{\tan(x)-x}{x^2\sin(x)}=\frac13
$$
We can also use L'Hospital
$$
\begin{align}
\lim_{x\to0}\frac{\tan(x)-x}{x^2\sin(x)}
&=\lim_{x\to0}\frac{\tan(x)-x}{x^3}\lim_{x\to0}\frac{x}{\sin(x)}\\
&=\lim_{x\to0}\frac{\sec^2(x)-1}{3x^2}\lim_{x\to0}\frac{1}{\cos(x)}\\
&=\lim_{x\to0}\frac{2\sec^2(x)\tan(x)}{6x}\cdot1\\
&=\frac13\lim_{x\to0}\sec^2(x)\lim_{x\to0}\frac{\tan(x)}{x}\\
&=\frac13\cdot1\cdot\lim_{x\to0}\frac{\sec^2(x)}{1}\\
&=\frac13
\end{align}
$$