Using Residu Theorem
You have that $$\int_{\mathbb R}\frac{\cos(\lambda x)-1}{x^2}\,\mathrm d x=\Re\int_{\mathbb R}\frac{e^{i\lambda x}-1}{x^2}\,\mathrm d x.$$
Consider $$\Gamma _{\varepsilon,R} =C_1^R\cup L_1^{R,\varepsilon} \cup C_2^\varepsilon \cup L_2^{R,\varepsilon },$$
where
\begin{align*}
C_1^R&:=\{Re^{i\theta }\mid \theta \in [0,\pi]\}\\
C_2^\varepsilon &:=\{\varepsilon e^{i\theta }\mid \theta \in [\pi,2\pi]\}\\
L_1^{R,\varepsilon }&:=[-R,-\varepsilon ]\\
L_{2}^{R,\varepsilon }&:=[\varepsilon ,R].
\end{align*}
Using Residue theorem $$\int_{\Gamma _{R,\varepsilon }}\frac{e^{i\lambda z}-1}{z^2}\,\mathrm d z=-2\pi \lambda .$$
Taking $R\to \infty $ and $\varepsilon \to 0$ allows you to conclude.