Let $\alpha > 1$, how to compute this integral:
$$ I(\alpha)=\int_{0}^{\infty} \frac{\log z}{1+z^{\alpha}}dz $$
My try:
When $\alpha = 2$, I find that $$ I(\alpha) = \int_{0}^{1} \frac{\log z}{1+z^{2}}dz + \int_{1}^{\infty} \frac{\log z}{1+z^{2}}dz = \int_{0}^{1} \frac{\log z}{1+z^{2}}dz + \int_{1}^{0} \frac{\log z}{1+z^{2}}dz = 0 $$ when I replace $z$ with $\frac{1}{t}$ of the integration. But I'm stuck when $\alpha \neq 2.$
Any help will be greatly appreciated.