This posting is motivated by the answer to the this posting.
Let $$I(n;a)=\int^\infty_n \Big(1+\frac{x}{n}\Big)^n e^{-ax}\,dx,$$ where $0<a<\infty$ and $n\in\mathbb{N}$. It is clear that $$I(n;a)\geq 2^n\int^\infty_ne^{-ax}\,dx=\frac{1}{a}\Big(\frac{2}{e^a}\Big)^n$$ From this, it follows that $\lim_{n\rightarrow\infty}I(n;a)=\infty$ for $0<a<\log 2$.
On the other hand, using the fact that $g_n(x)=\big(1+\tfrac{x}{n}\big)^ne^{-\tfrac{x}{2}}$ attains a (global) maximum at $x=n$ in the interval $(0,\infty)$ $$I(n;a)=\int^\infty_n g_n(x) e^{-(a-\frac12)x}\,dx\leq \frac{1}{a-\frac12}\Big(\frac{2}{e^a}\Big)^n$$ for all $a>\frac12$. From this, it follows that $\lim_{n\rightarrow\infty}I(n;a)=0$ for $a>\log(2)$ (of course $\log 2>\tfrac12$).
The inequalities presented above also show that for $a=\log 2$ $$\frac{1}{\log 2}\leq I_n=I(h;\log 2)\leq \frac{2}{2\log 2 -1}$$
The question(s) is (are): is $I_n$ convergent? if not what are the values of $\liminf_nI_n$ and $\limsup_nI_n$? I would be content with a prove or disprove of the former question; the later would be a treat.