Show that $k[x,y]/\langle y+1\rangle \cong k[x]$.
Define $\varphi : k[x,y] \to k[x]$ such that $x \longmapsto 0$ and $y \longmapsto -1$, then $\ker \varphi=\{p(x,y) \in k[x,y] \mid \varphi(p)=p(0,-1)=0\}$.
I'm now trying to show that $\ker \varphi=\langle y+1 \rangle$ in order to invoke the first isomorphism theorem to conclude that $k[x,y]/\langle y + 1 \rangle = k[x,y]/\ker \varphi \cong k[x].$
If $g \in \langle y+1 \rangle$, then $g(x,y)=q(x,y)(y+1)$ for $q \in k[x,y]$ so $$\varphi(g)=g(0,-1)=q(0,-1)(-1+1)= 0 \implies g \in \ker \varphi.$$
How should I approach the direction $\ker \varphi \subset \langle y +1 \rangle$? Usually with the one variable approach I'm able to use the division algorithm and conlcude from the remainder's degree the result, but it doesn't apply to the multivariate case?