I cannot find the way to show that
if $X_1,\dots,X_n$ are independent standard normal random variables, then
$$ \lim_{n \rightarrow \infty} \frac {\mathbb{E} \max_{i=1,\dots,n}X_i}{\sqrt{2\log n}} = 1 $$
I could only show that $\mathbb{E} \max_{i=1,\dots,n}X_i \leq \sqrt{2 \log n}$