Find the greatest common divisor of $6x^2 +22$ and $2x+19$ in $\Bbb Z_{23}[x]$.
Computing I get that $$\require{enclose}\begin{array}{rlc}\phantom{\color{Magenta}{2 x}+19}&\phantom{\enclose{longdiv}{}-}\begin{array}{rrr}{3 x}&{+6}&\phantom{+22}\end{array}\\{2 x}+19&\phantom{-}\enclose{longdiv}{\begin{array}{ccc}{6 x^{2}}&+0 x&+22\end{array}}&\\\phantom{\color{Magenta}{2 x}+19}&\begin{array}{rrr}-\phantom{6 x^{2}}&\phantom{+0 x}&\phantom{+22}\\\phantom{\enclose{longdiv}{}}6 x^{2}&+11 x\\\hline\phantom{\enclose{longdiv}{}}&{- 11 x}&+22\\&-\phantom{- 57 x}&\phantom{+22}\\\phantom{\enclose{longdiv}{}}&-11 x&+22\\\hline\phantom{\enclose{longdiv}{}}&&0\end{array}&\begin{array}{c}\phantom{6 x^{2}+0 x+22}\\\\\\\phantom{- 57 x+22}\\\color{Green}\\\phantom{\frac{1127}{2}}\end{array}\end{array}$$
And by the extended euclidean algorithm the last nonzero remainder is the gcd. However here I'm not getting a remainder at all so what is the gcd in this case?
The actual solution for the question is that the gcd should be $x+21$, but where can I derive this?