Lambert function will not be of any use for this problem which is purely numerical.
Consider that you look for the non-trivial zero of function
$$f(x)=x^x-x-1$$
The first derivative
$$f'(x)=x^x (\log (x)+1)-1$$ cancels at $x=1$ and $f(1)=-1$. So, for an approximation, expand as a series
$$f(x)=-1+(x-1)^2+\frac{1}{2} (x-1)^3+\frac{1}{3} (x-1)^4+\frac{1}{12}
(x-1)^5+O\left((x-1)^6\right)$$ Using series reversion
$$x=1+t-\frac{t^2}{4}-\frac{t^3}{96}+\frac{t^4}{12}+O\left(t^{5}\right)\quad \text{where}\quad t=\sqrt{1+f(x)}$$ Since you want $f(x)=0$, then the approximation
$$x \sim \frac{175}{96}=1.82292\cdots$$ which is not too bad. Now, you can polish the root with very few iterations of Newton method
$$\left(
\begin{array}{cc}
n & x_n \\
0 & 1.822916667 \\
1 & 1.779309489 \\
2 & 1.776783063 \\
3 & 1.776775040
\end{array}
\right)$$
If you really want to see something with Lambert, make the expansion around $x=3\Omega$ $(\Omega=W(1))$ since
$$f(3\Omega)=-0.231333$$ Using series and then series reversion wuld give
$$x\sim 3 \Omega+\frac{-3^{3 \Omega } \Omega ^{3 \Omega }+3 \Omega +1}{3^{3 \Omega } \Omega ^{3
\Omega } (\log (3 \Omega )+1)-1}=1.78456$$
Edit
If you know about Padé approximants,
$$f(x)+1=\frac{(x-1)^2+\frac{49}{90} (x-1)^3 } {1+\frac{2 }{45}(x-1)-\frac{16}{45} (x-1)^2+\frac{43}{540} (x-1)^3 }+O((x-1)^7)$$ Let $t=x-1$ and $f(x)=0$ to face a cubic equation
$$251 t^3+732 t^2-24 t-540=0$$ which has three real roots. Using the trigonometric method, they are
$$t_k=\frac{4}{251} \left(7 \sqrt{314} \cos \left(\frac{1}{3} \left(2 \pi k-\cos
^{-1}\left(\frac{124897}{61544 \sqrt{314}}\right)\right)\right)-61\right)\quad \quad k=0,1,2$$ The one of interest is $t_0$ which, numerically, is $0.776346$ making $x=1.776346$ while the exact solution is $1.776775$.