1

Find the following limit $$\lim_{n\to+\infty}\int_{x\in[0,1]^n}\frac{x_1^2 + x_2^2 + ... + x_n^2}{x_1 + x_2 + ... + x_n}dx$$.

I used Cauchy-Schwarz to find a lower bound $\frac12$: Note that

$$(x_1^2 + x_2^2 + ... + x_n^2)(1 + 1 + ... + 1) \ge (x_1 + x_2 + ... + x_n)^2$$

$$\therefore \int_{x\in[0,1]^n}\frac{x_1^2 + x_2^2 + ... + x_n^2}{x_1 + x_2 + ... + x_n}dx \ge \frac1n\int_{x\in[0,1]^n}(x_1 + x_2 + ... + x_n)dx = \frac1n(\int_{x\in[0,1]^n}x_1dx + \int_{x\in[0,1]^n}x_2dx + ... + \int_{x\in[0,1]^n}x_ndx)$$

Also

$$\int_{x\in[0,1]^n}x_idx = \frac12$$

$$\therefore \int_{x\in[0,1]^n}\frac{x_1^2 + x_2^2 + ... + x_n^2}{x_1 + x_2 + ... + x_n}dx\ge \frac12, \forall n$$

By assuming the order of all $x_i$, we can get an upper bound 1.

$$\frac{x_1^2 + x_2^2 + ... + x_n^2}{x_1 + x_2 + ... + x_n}\le \max\{\frac{x_1^2}{x_1}, \frac{x_2^2}{x_2}, ..., \frac{x_n^2}{x_n}\} = \max\{x\}$$

By symmetricity

$$\int_{x\in[0,1]^n}\frac{x_1^2 + x_2^2 + ... + x_n^2}{x_1 + x_2 + ... + x_n}dx = n\int_{x\in[0,1]^n\\\max x = x_1}\frac{x_1^2 + x_2^2 + ... + x_n^2}{x_1 + x_2 + ... + x_n}dx \\\le n\iint_{x_1\in[0,1]\\x_i\in[0,x_1]}x_1dx = n\int_{x_1\in[0,1]}x_1^ndx_1 = \frac{n}{n+1}$$

whose limit is 1.

But what's the exact limit?

Seems like this problem has something to do with expectation and variance, but I have no idea on how to do it.

  • 1
    Hint, if $X_1,...,X_n$ are independent $\mathcal Unif([0,1])$ random variables, then your integral is just $\mathbb E[ \frac{\sum_{k=1}^n X_k^2}{\sum_{k=1}^n X_k}]$. – Presage Mar 25 '22 at 23:34
  • But $\mathbb{E}[\frac{\sum X_k^2}{\sum X_k}] \neq \frac{\mathbb{E}[\sum X_k^2]}{\mathbb{E}[\sum X_k]}$ because they are not independent. Could you please give more hint on how to proceed? Thanks! – vyjtkbyykyhuk Mar 25 '22 at 23:45
  • Of course: $\frac{\sum_{k=1}^n X_k^2}{\sum_{k=1}^n X_k} = \frac{\sum_{k=1}^n X_k^2}{n} \cdot \frac{1}{ \frac{\sum_{k=1}^n X_k}{n}}$. Does "sum" divided by "number of terms" reminds you of something? – Presage Mar 25 '22 at 23:48
  • Oh okay I see. By dominated convergence theorem, we know that the limit we want is equal to $\mathbb{E}[\frac{\lim\sum\frac{X_k^2}{n}}{\lim\sum\frac{X_k}{n}}]$, which equals to $\mathbb{E}[\frac{\mathbb{E}[X^2]}{\mathbb{E}[X]}] = \frac12$ by SLLN. Thanks! – vyjtkbyykyhuk Mar 25 '22 at 23:57
  • Should be $2/3$ in the last equality :) – Maximilian Janisch Mar 26 '22 at 00:05
  • Oops. Thanks so much! – vyjtkbyykyhuk Mar 26 '22 at 02:02

0 Answers0