When I met the integral $\int_{0}^{\frac{\pi}{2}} \ln (1+\sin x-\cos x) d x$, I evaluated it by squaring $ 1+\sin x -\cos x. $ $ \begin{aligned}\int_{0}^{\frac{\pi}{2}} \ln (1+\sin x-\cos x) d x&=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \ln (1+\sin x-\cos x)^{2} d x \\&=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \ln [2(1+\sin x-\cos x-\sin x \cos x)] d x \\&=\frac{1}{2}\left[\int_{0}^{\frac{\pi}{2}} \ln 2 d x+ \int_{0}^{\frac{\pi}{2}} \ln [(1+\sin x)(1-\cos x)] d x\right]\end{aligned} \tag*{} $ Now we deal with the last integral $ \displaystyle \begin{aligned}\int_{0}^{\frac{\pi}{2}} \ln [(1+\sin x)(1-\cos x)] d x&=\int_{0}^{\frac{\pi}{2}} \ln (1+\sin x) d x+\int_{0}^{\frac{\pi}{2}} \ln (1-\cos x) d x \\&=\int_{0}^{\frac{\pi}{2}} \ln (1+\cos x) d x+\int_{0}^{\frac{\pi}{2}} \ln (1-\cos x) d x \\&=\left.\int_{0}^{\frac{\pi}{2}} \ln \left(1-\cos ^{2} x\right) d x\right.\\&=2 \int_{0}^{\frac{\pi}{2}} \ln (\sin x) d x \quad \textrm{ (By my post in Footnote )}\\&=2\left(-\frac{\pi}{2} \ln 2\right)\\&=-\pi \ln 2\end{aligned} \tag*{} $ We can now conclude that $\displaystyle \boxed{\int_{0}^{\frac{\pi}{2}} \ln (1+\sin x-\cos x) d x=\frac{1}{2}\left(\frac{\pi}{2} \ln 2-\pi \ln 2\right)=-\frac{\pi}{4} \ln 2 } \tag*{} $
Then I want to find the integral with narrow width $0$ to $\frac{\pi}{4}$.
Similarly, we have $$\int_{0}^{\frac{\pi}{4}} \ln (1+\sin x-\cos x) d x =\frac{1}{2}\left[\frac{\pi}{4}\ln 2 + \int_{0}^{\frac{\pi}{4}} \ln [(1+\sin x)(1-\cos x)] d x\right] $$
$$\int_{0}^{\frac{\pi}{4}} \ln [(1+\sin x)(1-\cos x)] d x= \int_{0}^{\frac{\pi}{4}} \ln (1+\sin x) d x+\int_{0}^{\frac{\pi}{4}} \ln (1-\cos x) d x $$
\begin{aligned}\int_{0}^{\frac{\pi}{4}} \ln (1-\cos x) d x&=\int_{0}^{\frac{\pi}{4}} \ln \left(2 \sin ^{2} \frac{x}{2} \right) d x \\ &=\int_{0}^{\frac{\pi}{4}}[\ln 2+2 \ln (\sin \frac{x}{2})] d x \\ &=\frac{\pi}{4} \ln 2+4 \int_{0}^{\frac{\pi}{8}} \ln (\sin x) d x \\ \end{aligned}
However, I am stuck in this integral and $ \displaystyle \int_{0}^{\frac{\pi}{4}} \ln (1+\sin x) d x$. Your help and suggestion is highly appreciated.
Footnote: My post.