I'm doing Ex 3.29.1 in Brezis's book of Functional Analysis
Let $(E, |\cdot|)$ be a uniformly convex Banach space. Then $\forall M>0, \forall \varepsilon>0, \exists \delta>0$ such that the inequality $$ \frac{|x|^2}{2} + \frac{|y|^2}{2} -\left | \frac{x + y}{2} \right |^2 \ge \delta $$ holds for all $x,y\in E$ with $|x|\le M,|y|\le M, |x-y|>\varepsilon$.
My strategy is to assume the contrary and then obtain $x,y\in E$ such that $$ \frac{|x|^2}{2} + \frac{|y|^2}{2} \le \left | \frac{x + y}{2} \right |^2. $$
Below is my failed attempt. Could you leave me some hints (not full solution) to finish the proof?
By normalizing, we can assume $M=1$. Assume the contrary that there exist $\varepsilon>0$ and a sequence $(x_n,y_n)$ with $|x_n|\le 1,|y_n|\le 1, |x_n-y_n|>\varepsilon$ such that $$ 0\le \frac{|x_n|^2}{2} + \frac{|y_n|^2}{2} -\left | \frac{x_n+y_n}{2} \right |^2 < \frac{1}{n}, \quad \forall n. $$
Then $$ \lim_n \left [\frac{|x_n|^2}{2} + \frac{|y_n|^2}{2} -\left | \frac{x_n+y_n}{2} \right |^2 \right ] =0. $$
Notice that $({|x_n|^2}/{2}), ({|y_n|^2}/{2})$ are bounded. WLOG, we can assume that they are convergent. Then $$ \lim_n \left [\frac{|x_n|^2}{2} + \frac{|y_n|^2}{2} \right ] = \lim_n \left | \frac{x_n+y_n}{2} \right |^2. $$
Because $E$ is uniformly convex, it's reflexive. WLOG, we assume that there are $x,y\in E$ such that $x_n \rightharpoonup x$ and $y_n \rightharpoonup y$ in weak topology. Notice that the norm function is lower semi-continuous in weak topology, so $$ \frac{|x|^2}{2} + \frac{|y|^2}{2} \le \lim_n \left [\frac{|x_n|^2}{2} + \frac{|y_n|^2}{2} \right ] = \lim_n \left | \frac{x_n+y_n}{2} \right |^2 \ge \left | \frac{x + y}{2} \right |^2. $$