Prove: Let $p$ be an integer greater than $1$. Suppose $a,b,c$ be positive real numbers. Then $\left(\frac{a+b+c}{3}\right)^p\leq \frac{a^p+b^p+c^p}{3}$.
By AM-GM, I get $\frac{a+b+c}{3}\geq (abc)^{1/3}$ and $\frac{a^p+b^p+c^p}{3}\geq (a^pb^pc^p)^{1/3}$. Then $\left(\frac{a+b+c}{3}\right)^p\geq (abc)^{p/3}$.
I get stuck in how to relate $\left(\frac{a+b+c}{3}\right)^p$ and $\frac{a^p+b^p+c^p}{3}$. What should I do? I also face the same problem on proving $\left(\frac{a+b+c+d}{4}\right)^p\leq \frac{a^p+b^p+c^p+d^p}{4}$.
My tutor suggests me to let $u=\frac{a+b}{2}$ and $v=\frac{c+d}{2}$. I know $\left(\frac{u+v}{2}\right)^p\leq \frac{u^p+v^p}{2}$. So I substitute $u$ and $v$ into the inequality, and get $\left(\frac{a+b+c+d}{4}\right)^p\leq \frac{{(a+b)}^p+{(c+d)}^p}{2^{p+1}}$.
I haven't learnt Jensen's inequality. I suppose I should make use of AMGM to solve the problem(?