A similar problem appeared here Using the probabilistic methods described there we may proceed as follows:
Let $Y_\mu$ be a Poisson random variable with parameter $\mu$. Its' characteristic function is given by
$$
\phi_{X_\mu}(t)=e^{\mu(e^{it}-1)}$$
Consider $Z_\mu:=\frac{Y_\mu-\mu}{\sqrt{\mu}}$. THe Characteristic function of $Z_\mu$ is
$$\phi_{Z_\mu}(t)=\exp\Big(\mu\Big(e^{\tfrac{ti}{\sqrt{\mu}}}-1-\tfrac{ti}{\sqrt{\mu}}\Big)\Big)\xrightarrow{\mu\rightarrow\infty}e^{-t^2/2}$$
That is, $Z_\mu$ converges in law to the standard normal distribution.
Notice that with $\mu=\lambda t$,
$$A_\mu:=e^{-\lambda t}\sum_{k\leq \lambda x}\frac{(\lambda t)^k}{k!}=\mathbb{P}\big[X_\mu\leq \lfloor\mu\tfrac{x}{t}\rfloor\Big]=\mathbb{P}\Big[Z_\mu\leq \frac{\lfloor \mu\alpha\rfloor -\mu}{\sqrt{\mu}}\Big]$$
where $\alpha=x/t$.
- When $t=x$, $\alpha=1$ and $\frac{\lfloor \mu\alpha\rfloor -\mu}{\sqrt{\mu}}\approx0$ and so, $A_\mu\xrightarrow{\mu\rightarrow\infty}\Phi(0)=\frac12$
- When $t>x$, $\alpha<1$ and $\frac{\lfloor \mu\alpha\rfloor -\mu}{\sqrt{\mu}}\approx (\alpha-1)\sqrt{\mu}\xrightarrow{\mu\rightarrow\infty}-\infty$ and so, $A_\mu\xrightarrow{\mu\rightarrow\infty}\Phi(-\infty)=0$
- When $t<x$, $\alpha>1$ and $\frac{\lfloor \mu\alpha\rfloor -\mu}{\sqrt{\mu}}\approx (\alpha-1)\sqrt{\mu}\xrightarrow{\mu\rightarrow\infty}\infty$ and so, $A_\mu\xrightarrow{\mu\rightarrow\infty}\Phi(\infty)=1$
There are a few details to consider about the right way to pass to the limits in $\mathbb{P}\Big[Z_\mu\leq \frac{\lfloor \mu\alpha\rfloor -\mu}{\sqrt{\mu}}\Big]$ since $\frac{\lfloor \mu\alpha\rfloor -\mu}{\sqrt{\mu}}$ is not fixed, but the details are not complicated (Slutsky's theorem for example).