I’ll leave it to you to decide whether this is a “nice” proof – I certainly had fun finding it :-) I suspect there’s an elegant and shorter combinatorial proof, though.
In terms of the Stirling numbers of the second kind $\def\stir#1#2{\left\{#1\atop#2\right\}}\stir nk$, there are $k!\stir nk$ surjective functions from $[n]$ to $[k]$. The ordinary generating function for the $\stir nk$ with respect to the lower index $k$ is the $n$-th Touchard polynomial:
$$
T_n(x)=\sum_{k=0}^n\stir nkx^k\;.
$$
These polynomials have an interesting series representation (see Equation $(4.2.16)$ on page $116$ in generatingfunctionology):
$$
T_n(x)=\mathrm e^{-x}\sum_{r=0}^\infty\frac{x^rr^n}{r!}\;.
$$
We can use this to obtain the generating function $F_n(x)$ for the number of surjective functions, with an extra factor $k!$:
\begin{eqnarray}
F_n(x)
&=&
\sum_{k=0}^n\stir nkk!x^k
\\
&=&
\sum_{k=0}^n\stir nkx^k\int_0^\infty\mathrm e^{-y}y^k\mathrm dy
\\
&=&
\int_0^\infty\mathrm e^{-y}\sum_{k=0}^n\stir nk(xy)^k\mathrm dy
\\
&=&
\int_0^\infty\mathrm e^{-y}T_n(xy)\mathrm dy
\\
&=&
\int_0^\infty\mathrm e^{-y}\mathrm e^{-xy}\sum_{r=0}^\infty\frac{(xy)^rr^n}{r!}\mathrm dy
\\
&=&
\sum_{r=0}^\infty\frac{x^rr^n}{r!}\int_0^\infty\mathrm e^{-y}\mathrm e^{-(1+x)y}y^r\mathrm dy
\\
&=&
\sum_{r=0}^\infty\frac{x^rr^n}{r!}\frac{r!}{(1+x)^{r+1}}
\\
&=&
\frac1{1+x}\sum_{r=0}^\infty\left(\frac x{1+x}\right)^rr^n
\end{eqnarray}
We want to show that this is zero at $x=-\frac12$. The factor in parentheses is $-1$ at this point, so the series diverges and we have to take the limit $x\searrow-\frac12$. (Remember that this is actually a polynomial, written as an infinite series.) Now for $n\gt0$
\begin{eqnarray}
\sum_{r=0}^\infty z^rr^n
&=&
\left(z\frac{\mathrm d}{\mathrm d z}\right)^n\sum_{r=0}^\infty z^r
\\
&=&
\left(z\frac{\mathrm d}{\mathrm d z}\right)^n\frac1{1-z}
\\
&=&
\left(\frac{\mathrm d}{\mathrm d\log z}\right)^n\frac1{1-z}
\\
&=&
\frac{\mathrm d^n}{\mathrm dt^n}\frac1{1-\mathrm e^t}
\\
&=&
\frac{\mathrm d^n}{\mathrm dt^n}\left(\frac1{1-\mathrm e^t}-\frac12\right)
\\
&=&
\frac12\frac{\mathrm d^n}{\mathrm dt^n}\frac{1+\mathrm e^t}{1-\mathrm e^t}
\\
&=&
\frac12\frac{\mathrm d^n}{\mathrm dt^n}\frac{\mathrm e^{-\frac t2}+\mathrm e^{\frac t2}}{\mathrm e^{-\frac t2}-\mathrm e^{\frac t2}}\;.
\end{eqnarray}
This is the $n$-th derivative of an odd function, so for even $n$ it’s zero at $t=0$, which corresponds to $z=1$ and $x=-\frac12$. Thus, for even $n\gt0$ we have $F_n\left(-\frac12\right)=0$.
\cdots
. – joriki Mar 19 '22 at 15:21