Let $\mathbb{F}_2^n$ be a finite dimensional vector space over $\mathbb{F}_2$.
A map $b:\mathbb{F}_2^n\times \mathbb{F}_2^n\rightarrow \{\pm 1\}$ is called bilinear or a bicharacter if $$b(a_1+a_2,a_3)=b(a_1,a_3)b(a_2,a_3)\ \textrm{and}\ b(a_1,a_2+a_3)=b(a_1,a_2)b(a_1,a_3)$$ for all $a_1,a_2,a_3\in \mathbb{F}_2^n$. A bilinear $b$ as above is non-degenerate if for every $a_1\in \mathbb{F}_2^n$ there exists $a_2\in \mathbb{F}_2^n$ such that $b(a_1,a_2)\neq 1$.
How many non-degenerate bilinear maps $b:\mathbb{F}_2^n\times \mathbb{F}_2^n\rightarrow \{\pm 1\}$ are there?
It is not too hard to check that there are $2^{(n^2)}$ bilinear maps $\mathbb{F}_2^n\times \mathbb{F}_2^n\rightarrow \{\pm 1\}$, but I haven't found a way of counting the non-degenerate ones!