In my post, I found that $$\int_{0}^{1} \frac{\ln x}{\sqrt{1-x^{2}}} d x = -\frac{\pi}{2} \ln 2 .$$
Then I try to generalize the result to the integral by the same technique. $$ J_{n}:=\int_{0}^{1} \frac{\ln ^nx}{\sqrt{1-x^{2}}} d x $$
Letting $x=\cos \theta $ converting $I_n$ into \begin{aligned} J_{n} &=\int_{0}^{\frac{\pi}{2} } \frac{\ln^n (\cos \theta)}{\sin \theta} \sin \theta d \theta \\ &=\int_{0}^{\frac{\pi}{2}} \ln ^{n}(\cos \theta) d \theta \end{aligned}
By my post, $$\begin{aligned} (-2)^{n}J_n&= 2 \ln 2(-2)^{n-1} J_{n-1} + (n-1) !\sum_{k=0}^{n-2} \frac{2^{n-k}-2}{k_ !} \zeta(n-k) (-2)^{k} J_k \\J_n&= -\ln 2 J_{n-1} + (n-1) !\sum_{k=0}^{n-2} \frac{(-1)^{n-k}}{k !} \left(1-\frac{1}{2^{n-k-1}} \right)\zeta(n-k) J_k \end{aligned} $$
which is a reduction formula for $J_n.$
For example, $$ \begin{aligned} \int_{0}^{1} \frac{\ln ^2x}{\sqrt{1-x^{2}}} d x&=-\ln 2 J_{1}+\frac{1}{2} \zeta(2) J_{0} \\ &=-\ln 2\left(-\frac{\pi}{2} \ln 2\right)+\frac{1}{2} \zeta(2) J_{0} \\ &=\frac{\pi \ln ^{2} 2}{2}+\frac{\pi^{3}}{24}, \end{aligned} $$
which is checked by Wolframalpha.
My Question
Is there any closed form for the integral? Your comments and methods are warmly welcome.