Proof
(i) $\Rightarrow$ (ii):
Fix $\epsilon>0$ and choose any $\eta>0$.
Then there exists $n_0\in\mathbb{N}$ such that
\begin{align}\label{generalized scheffe (i)->(ii)1}
\mathbb{E}[|X_n|] - \mathbb{E}[|X_\infty|] \le \tfrac{\eta}2 \quad \forall n\ge n_0.
\end{align}
Since $\{X_\infty\}$ is uniformly integrable, there exists $\delta(\eta)>0$
such that
\begin{align*}
\mathbb{E}[|X_\infty| 1_{A}] \le \tfrac\eta2
\quad \forall A\in\mathcal{A} : \mathbb{P}(A) < \delta(\eta).
\end{align*}
Since $X_n\to X_\infty$ in probability, there therefore exists $n_1\in\mathbb{N}$
such that for all $n\ge n_1$
\begin{align}\label{generalized scheffe (i)->(ii)2}
\mathbb{P}(|X_\infty - X_n| > \epsilon) \le \delta(\eta)
\implies \mathbb{E}[|X_\infty| 1_{|X_\infty - X_n| > \epsilon}] \le \tfrac\eta2
\end{align}
Now we plug things together. We have for $n\ge\max\{n_0, n_1\}$
\begin{align*}
\mathbb{E}[|X_n| 1_{|X_\infty-X_n|>\epsilon}]
&= \mathbb{E}[|X_n|] - \mathbb{E}[|X_n| 1_{|X_\infty-X_n|\le\epsilon}]\\
&= \underbrace{\mathbb{E}[|X_n|] - \mathbb{E}[|X_\infty|]}_{
\le \tfrac\eta2
} + \underbrace{
\mathbb{E}[(|X_\infty| - |X_n|)1_{|X_\infty-X_n|\le\epsilon}]
}_{
\begin{aligned}
&\le \mathbb{E}[|X_\infty - X_n|1_{|X_\infty-X_n|\le\epsilon}]\\
&\le \epsilon
\end{aligned}
} + \underbrace{\mathbb{E}[|X_\infty|1_{|X_\infty-X_n|>\epsilon}]}_{
\le \tfrac\eta2
}
\end{align*}
This implies the claim. The first sum exploits the fact that the mass
of the random variables has to be similar. So we can not concentrate mass
on a small event such as $X_n$ being far from $X_\infty$. Which is
what examples of convergence in probability without $L^1$ convergence
exploit.
(ii) $\Rightarrow$ (iii):
We want to show
\begin{align*}
\lim_{M\to\infty} \sup_n \mathbb{E}[|X_n|1_{|X_n|> M}] = 0.
\end{align*}
So fix some $\delta>0$. We select $\epsilon := \tfrac\delta4$ and then
select $n_0\in\mathbb{N}$ such that for all $n\ge n_0$ we have
\begin{align}\label{convergence ui}
\mathbb{E}[|X_n|1_{|X_\infty - X_n| > \epsilon}] \le \epsilon + \tfrac\delta4.
\end{align}
As $\{X_1, \dots, X_{n_0}\}$ is a finite set it is uniformly
integrable, and there exists $M_0$ such that
\begin{align}\label{finite case}
\sup_{0\le n\le n_0} \mathbb{E}[|X_n| 1_{|X_n| > M}] \le \delta
\quad \forall M\ge M_0.
\end{align}
Similarly there exists $M_1$, such that
\begin{align}\label{X_infty is ui}
\mathbb{E}[|X_\infty| 1_{|X_\infty|>M-\epsilon}] \le \tfrac\delta4 \quad \forall M\ge M_1
\end{align}
To put things together, note that we always have
\begin{align}\label{indicator functions}
1_{|X_n| > M}
\le 1_{|X_\infty - X_n| > \epsilon}
+ 1_{|X_\infty|>M-\epsilon}1_{|X_\infty-X_n|\le \epsilon}.
\end{align}
This implies for all $M\ge \max\{M_0, M_1\}$
\begin{align*}
&\sup_{n\in\mathbb{N}} \mathbb{E}[|X_n| 1_{|X_n| > M}]\\
&\le \max\Big\{
\underbrace{\sup_{0\le n\le n_0} \mathbb{E}[|X_n| 1_{|X_n| > M}]}_{\le \delta},
\sup_{n\ge n_0} \underbrace{\mathbb{E}[|X_n| 1_{|X_\infty - X_n|>\epsilon}]}_{
\le \tfrac\delta2
} + \underbrace{\mathbb{E}[|X_n| 1_{|X_\infty|>M-\epsilon}1_{|X_\infty - X_n|\le\epsilon}]}_{
\begin{aligned}
&\le \mathbb{E}[|X_\infty| 1_{|X_\infty|>M-\epsilon}] + \epsilon\\
&\le \tfrac\delta2
\end{aligned}
}
\Big\}
\end{align*}
(iii) $\Rightarrow$ (iv): Fix some $\epsilon >0$,
then due to uniform integrability there exists some $\delta >0$, such
that $\mathbb{P}(A)<\delta$ implies for all $n$
\begin{align}\label{ui result}
\mathbb{E}[|X_n| 1_{A}] \le \epsilon \quad \text{and}\quad \mathbb{E}[|X_\infty|1_{A}] \le \epsilon.
\end{align}
Now we choose $n_0\in \mathbb{N}$ such that
\begin{align*}
\mathbb{P}(|X_\infty - X_n| > \epsilon) \le \delta \quad \forall n\ge n_0.
\end{align*}
With the previous result, this implies for all $n\ge n_0$
\begin{align*}
\mathbb{E}[|X_\infty - X_n|]
\le \underbrace{\mathbb{E}[|X_\infty - X_n|1_{|X_\infty - X_n|\le \epsilon}]}_{\le \epsilon}
+ \underbrace{
\mathbb{E}[|X_\infty| 1_{|X_\infty - X_n| > \epsilon}]
}_{\le \epsilon}
+ \underbrace{
\mathbb{E}[|X_n| 1_{|X_\infty - X_n| > \epsilon}]
}_{\le \epsilon}
\end{align*}
(iv) $\Rightarrow$ (i):
This finally follows from the reverse triangle inequality
\begin{align}\label{generalized scheffe: reverse triangle inequality}
\big\lvert|x|-|y|\big\rvert\le |x-y|,
\end{align}
and Jensen's inequality
\begin{align*}
\big\lvert \mathbb{E}\big[\lvert X_n \rvert\big] - \mathbb{E}\big[\lvert X_{\infty}\rvert\big] \big\rvert
&= \big\lvert \mathbb{E}\big[\lvert X_n \rvert- \lvert X_{\infty}\rvert\big] \big\rvert\\
&\le \mathbb{E}\big[ \big\lvert \lvert X_n\rvert - \lvert X_{\infty}\rvert \big\rvert\big]\\
&\le
\mathbb{E}\big[\lvert X_n - X_{\infty}\rvert\big] \to 0, \; (n \to \infty).
\end{align*}