One way to show an ideal $I$ is maximal is to show that $R/I$ is a field. This approach avoids norms.
(1) Given $$a=\sum_{i=0}^{p-2}a_i\omega^i,$$ show that $$a-(a_0+a_1+\dots+a_{p-2})\in\langle 1-\omega\rangle.$$
(2) Use this to show that $$\mathbb Z[\omega]/\langle 1-\omega\rangle\cong \mathbb Z/\langle q\rangle,$$ where $\langle q\rangle=\mathbb Z\cap \langle1-\omega\rangle.$
(3) Show that $\langle 1-\omega\rangle\cap\mathbb Z$ contains a prime, so $q$ is either that prime or a unit.
(4) Show that $1-\omega$ is not a unit, so neither is $q,$ and thus $q$ is prime and the quotient ring is a field.
The easiest way to prove the last step is to use norms, but it can be proved directly.
If $$1=(1-\omega)a=a_0+a_{p-2}+\sum_{i=1}^{p-2} (a_i-a_{i-1}+a_{p-2})\omega^i$$
Then $a_{p-2}=1-a_0$ and $a_i=a_{i-1}-a_{p-2}=a_{i-1}+(a_0-1).$ So $a_i=(i+1)a_0-i$ for all $i.$
That gives you $1-a_0=a_{p-2}=(p-1)a_0-(p-2)$ or $a_0=\frac{p-1}{p},$ which is not an integer.
I'll try to prove $\mathbb{Z}[\omega]/ \langle 1- \omega \rangle$ is a field by showing the element is irreducible.
– Shean Mar 11 '22 at 16:29