I am trying to find the $n$-th derivative of $\csc(m\pi)$, so I took few cases:
for simplicity let $x=\cot(m\pi)$ and $y=\csc(m\pi)$,
$$\frac{d^0}{dm^0}\csc(m\pi)=\pi^0(\color{red}{1}x^0y^1)$$
$$\frac{d^1}{dm^1}\csc(m\pi)=-\pi^1 (\color{red}{1}x^1y^1)$$
$$\frac{d^2}{dm^2}\csc(m\pi)=\pi^2(\color{red}{1}x^2y^1+\color{red}{1}x^0y^3)$$
$$\frac{d^3}{dm^3}\csc(m\pi)=-\pi^3(\color{red}{1}x^3y^1+\color{red}{5}x^1y^3)$$
$$\frac{d^4}{dm^4}\csc(m\pi)=\pi^4(\color{red}{1}x^4y^1+\color{red}{18}x^2y^3+\color{red}{5}x^0y^5)$$
$$\frac{d^5}{dm^5}\csc(m\pi)=-\pi^5(\color{red}{1}x^5y^1+\color{red}{58}x^3y^3+\color{red}{61}x^1y^5)$$
$$\frac{d^6}{dm^6}\csc(m\pi)=\pi^6(\color{red}{1}x^6y^1+\color{red}{179}x^4y^3+\color{red}{479}x^2y^5+\color{red}{61}x^0y^7)$$
and saw that
\begin{align} \frac{d^n}{dm^n}\csc(m\pi)&=(-\pi)^n\sum_{k=0}^{\lfloor{n/2}\rfloor}\color{red}{a_k} x^{n-2k} y^{2k+1}\\ &=(-\pi)^n\sum_{k=0}^{\lfloor{n/2}\rfloor}\color{red}{a_k} \cot^{n-2k}(m\pi)\csc^{2k+1}(m\pi)\\ &=(-\pi)^n\csc^{n+1}(m\pi)\sum_{k=0}^{\lfloor{n/2}\rfloor}\color{red}{a_k} \cos^{n-2k}(m\pi) \end{align}
If we replace $n$ by $2n$ then separate the last term we have
$$\frac{d^{2n}}{dm^{2n}}\csc(m\pi)=\pi^{2n}\csc^{2n+1}(m\pi)\left[a_n+\sum_{k=0}^{n-1}\color{red}{a_k} \cos^{2n-2k}(m\pi)\right]$$
In the cases mentioned above, we notice that when the order of the derivative is $0, 2, 4, 6$, the coefficients of the last terms are $1, 1, 5, 61$ which match the absolute value of the Euler numbers:
$$E_0=1, E_2=-1, E_4=5, E_6=-61$$
and so
$$\frac{d^{2n}}{dm^{2n}}\csc(m\pi)=\pi^{2n}\csc^{2n+1}(m\pi)\left[|E_{2n}|+\sum_{k=0}^{n-1}\color{red}{a_k} \cos^{2n-2k}(m\pi)\right]$$
By the way, if we take the limit to both sides of the last result letting $m$ approach $1/2$, we have
$$\lim_{m\to \frac12}\frac{d^{2n}}{dm^{2n}}\csc(m\pi)=\pi^{2n}(1)\left[|E_{2n}|+0\right]=|E_{2n}|\pi^{2n}.$$
Question: Is it possible to find $\color{red}{a_k}$?