I need help with this excercise.
Let $p$ be a prime, and $n$ and $a$ positive integers. Then $p^a$ exactly divides $n$ if $p^a\mid n$, but $p^{a+1} \not \mid n$; we then write $p^a\parallel n$. Prove each.
If $p^a\parallel n$ and $p^b\parallel m$, then $p^{a+b}\parallel nm$.
I know that, if $p^a\parallel n$ and $p^b\parallel m$, then $p^a\mid n$ and $p^b\mid m$. Exist integers $X,Y$ such that
$$n=p^aX \hspace{1cm} \text{ and } \hspace{1cm} m=p^bY $$ then, $mn= p^{a+b}(XY)$.
Is it necessary to prove that $p \not \mid X$ and $p \not \mid Y$? If so, how can I prove it?