-1

Find the exact value of the following integral, where $r,s \in \mathbb{R} $ and $ 0<r<s$. $$\int_{0}^{\infty}\frac{x^{r-1}}{1+x^s}dx$$

I have looked 3 cases:
Case 1: $0<r,s<1$
Case 2: $0<r<1<s$
Case 3: $1<r<s$
Under all 3 cases, the integral is convergent from 0 to $\infty$. The area under the curve varies with r and s. How can I find the "exact value" of the integral?

AtKin
  • 628

1 Answers1

1

Hint

$$I=\int\frac{x^{r-1}}{1+x^s}dx$$

$$x^s=t \implies x=t^{\frac{1}{s}}\implies dx=\frac 1 s t^{\frac{1}{s}-1} \,dt$$ $$I=\frac{1}{s}\int \frac {t^a } {1+t}\,dt \qquad \text{where} \qquad a=\frac r s-1 <0$$

Under the conditions $r,s \in \mathbb{R}$ and $0 <r <s$, the definite integral $$J=\int_0^\infty \frac {t^a } {1+t}\,dt$$ is pretty well known.