attempt:
Find two injective functions $f:S^2\to\mathbb{R}$ and $g:\mathbb{R}\to S^2$ sufficent to prove equinumerous.
$$f:S^2\to\mathbb{R}\\(x,y,z)\to e^x+e^y+e^z$$
Verify: if $(x,y,z)\neq(\hat{x},\hat{y},\hat{z}),$ then $f((x,y,z))\neq f((\hat{x},\hat{y},\hat{z}))$ by observation.
re-edited For simplicity, just consider the projection function $$f:S^2\to\mathbb{R}\\(x,y,z)\to e^x$$
$$g:\mathbb{R}\to S^2\\r\to \begin{cases} x =\sin(\tan^{-1}(r)) \\ y =\cos(\tan^{-1}(r))\\z=0 \\ \end{cases}$$
Verify: $\tan^{-1}(\cdot)$ is injective function, sign any real numbers to $(\frac{-\pi}{2},\frac{\pi}{2})$, and $\sin(\cdot)$ and $\cos(\cdot)$ are injective in the domain $(\frac{-\pi}{2},\frac{\pi}{2})$.
I spent plenty of time coming up with function $g$, really appreciate it if you can let me know if this is correct