Today in lecture, we derived the formula for change of variables in multivariable integration, i.e. $dV' = \det(J) dV$. Here is our derivation:
Let $\vec{F}: U \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ defined by $\vec{F}(x, y)$ be a bijection which represents a coordinate transformation $x = x(u, v)$ and $y = y(u, v)$.
Consider an area element $dV$ bounded by $(u_0, v_0), (u_0 + \Delta u, v_0), (u_0, v_0 + \Delta v)$ (and $(u_0 + \Delta u, v_0 + \Delta v)$). Under $\vec{F}$, the transformed area element $dV'$ will be bounded by $\vec{F}(u_0, v_0), \vec{F}(u_0 + \Delta u, v_0), \vec{F}(u_0, v_0 + \Delta v)$. As $\Delta u, \Delta v \to 0$, the transformed area element $dV'$ will approach a parallelogram, so we can approximate the area by
$$\begin{align*} \Delta a &\approx |\vec{a} \times \vec{b}| \\ &= |\color{purple}{(\vec{F}(u_0 + \Delta u, v_0) - \vec{F}(u_0, v_0)}) \times (\color{blue}{\vec{F}(u_0, v_0 + \Delta v) - \vec{F}(u_0, v_0)})| \\ &\approx |\color{purple}{(\vec{F}_u(u_0, v_0)\Delta u)}\times\color{purple}{(\vec{F}_v(u_0, v_0)\Delta v)}| \\ &= |\vec{F}_u\times\vec{F}_v|\Delta u\Delta v \end{align*}$$
Therefore, as $\Delta u, \Delta v \to 0$, $dA = \left|\begin{pmatrix}\nabla x \\ \nabla y\end{pmatrix}\right|dudv$.
And then of course this can be generalised to higher dimensions blablabla. However, I do not understand why approximating $\vec{F}(u_0 + \Delta u, v_0)$ by its linear approximation $\vec{F}(u_0 + \Delta u, v_0) \approx \vec{F}(u_0, v_0) + \Delta u\vec{F}_u(u_0, v_0)$ is sufficient. In particular, what happens if we instead approximate by say a quadratic approximation around $(u_0, v_0)$? And what happens to the $dV' = \cdots dV$? Does it change the scaling factor?
Thank you!