From Amir Beck book IntroductIon to nonlinear optimization p.29
We have function $f(x,y) = \frac{x+y}{x^2+y^2+1}$
"... for any $(x,y)^T \in R^2 $ , $f(x,y) = \frac{x+y}{x^2+y^2+1} <= \sqrt{2} \frac{\sqrt{x^2+y^2}}{x^2+y^2+1} <= \sqrt{2} max\frac{t}{t^2+1}$ where the first inequality follows from the Cauchy–Schwarz inequality."
Can someone explain how Cauchy-Schwarz inequality used here ?
Use the fact that $(t-1)^2 = t^2 - 2t + 1 \geq 0$ for every $t \in \mathbb{R}$ to get that $t^2 + 1 \geq 2t$ (alternatively use CS). This implies that $\frac{1}{t^2+1} \leq \frac{1}{2t}$, so $\frac{t}{t^2+1} \leq \frac{t}{2t} = \frac{1}{2}$. Hence we have $f(x,y) \leq \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$ for every $(x,y) \in \mathbb{R}^2$. The maximum is achieved when $t=1$.
– User203940 Feb 25 '22 at 18:55