I'm practising for my linear algebra exam that is tomorrow by doing old exams. I stumbled in this one question, and got something out of it but I'm not really sure if I did it right.
The problem:
What links multiplication of complex numbers and multiplication of matrix $\begin{bmatrix} a&-b\\ b&a \end{bmatrix}\begin{bmatrix} c&-d\\ d&c \end{bmatrix}=...$ , where $a{,}\ b{,}\ c{,}\ d\in\mathbb{R}$?
My solution:
$\begin{bmatrix} a&-b\\ b&a \end{bmatrix}\begin{bmatrix} c&-d\\ d&c \end{bmatrix}=\begin{bmatrix} ac-bd&-ad-bc\\ ad+bc&ac-bd \end{bmatrix}$
We get $v_1=\begin{bmatrix} ac-bd\\ ad+bc \end{bmatrix}$ and $v_2=\begin{bmatrix} -ad-bc\\ ac-bd \end{bmatrix}$.
Then multiplication with complex numbers:
$\left(a{,}\ b\right)\cdot\left(c{,}\ d\right)$
$=\left(a+bi\right)\cdot\left(c+di\right)$
$=ac+adi+bci+bdi^2\ \parallel i^2=-1$
$=\left(ac-bd\right)+\left(ad+bc\right)i$
$=\left(ac-bd{,}\ ad+bc\right)$
$=v_1$
and
$\left(-b{,}\ a\right)\cdot\left(-d{,}\ c\right)$
$=\left(-b+ai\right)\cdot\left(-d+ci\right)$
$=bd-bci-adi+aci^2\ \parallel i^2=-1$
$=\left(-ac+bd\right)+\left(-ad-bc\right)i $
$=\left(-ac+bd{,}\ -ad-bc\right)$
This should equal to $v_2$ but it doesn't. Why is that, and why is it "flipped" (shouldn't $-ad-bc$ be first and then $-ac+bd$)?
I really appreciate any help :)