6

I want to evaluate the following integral in a closed form involving elementary functions:

$$I = \displaystyle \int_{0}^{\frac{\pi}{2}} \frac{dx}{\sqrt[3]{\frac{1}{3} + \sin^2 x}} = \frac{\sqrt[3]{3}\Gamma^3\left(\frac{1}{3}\right)}{\sqrt[3]{2^7}\pi} $$

The integral converges numerically to the solution proposed.

Here is my try:

From $ \cos^2 x + \sin^2 x = 1$

$$ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{\sqrt[3]{\frac{1}{3} + \sin^2 x}} = \int_{0}^{\frac{\pi}{2}} \frac{dx}{\sqrt[3]{\frac{4}{3} - \cos^2 x}} = \frac{\sqrt[3]{3}}{2^{\frac{2}{3}}}\int_{0}^{\frac{\pi}{2}} \frac{dx}{\sqrt[3]{1 - \frac{3}{4}\cos^2 x}} $$

Since $\displaystyle 1> \left|\frac{3}{4}\cos^2(x) \right|$ we can expand the integrand with the generalized binomial theorem:

$$ I = \frac{\sqrt[3]{3}}{2^{\frac{2}{3}}}\int_{0}^{\frac{\pi}{2}} \sum_{j=0}^{\infty} \binom{-\frac{1}{3}}{j}(-1)^j\left(\frac{3}{4}\right)^j\cos^{2j} x dx = \frac{\sqrt[3]{3}}{2^{\frac{2}{3}}}\sum_{j=0}^{\infty} \binom{-\frac{1}{3}}{j}(-1)^j\left(\frac{3}{4}\right)^j\int_{0}^{\frac{\pi}{2}} \cos^{2j} x dx$$

The integral

$$ \int_{0}^{\frac{\pi}{2}} \cos^{2j} x dx = \frac{\sqrt{\pi}}{2} \frac{\Gamma\left(j+\frac{1}{2}\right)}{\Gamma(j+1)}$$

is a particular case of one of the integral representations of the complete beta function

Therefore

$$ \frac{\sqrt[3]{3}}{2^{\frac{2}{3}}}\sum_{j=0}^{\infty} \binom{-\frac{1}{3}}{j}(-1)^j\left(\frac{3}{4}\right)^j\int_{0}^{\frac{\pi}{2}} \cos^{2j} x dx = \frac{\sqrt[3]{3}}{2^{\frac{2}{3}}}\sum_{j=0}^{\infty} \binom{-\frac{1}{3}}{j}(-1)^j\left(\frac{3}{4}\right)^j\frac{\sqrt{\pi}}{2} \frac{\Gamma\left(j+\frac{1}{2}\right)}{\Gamma(j+1)}$$

Using

$$ \binom{v}{m} = \frac{(v-m+1)_{m}}{m!}$$ $$ (-x)_{n} = (-1)^n(x-n+1)_{n}$$ $$ (x)_{n} = \frac{\Gamma(n+x)}{\Gamma(x)}$$

where $(x)_{n}$ is the rising factorial

we have

$$ I = \frac{\sqrt[3]{3}\pi}{2^{\frac{5}{3}}}\sum_{j=0}^{\infty} \frac{\left(\frac{1}{3}\right)_{j}\left(\frac{1}{2}\right)_{j}}{(1)_{j}} \frac{\left(\frac{3}{4}\right)^j}{j!} = \frac{\sqrt[3]{3}\pi}{2^{\frac{5}{3}}} F\left(\frac{1}{3},\frac{1}{2};1;\frac{3}{4} \right)$$

where $F(a,b;c;z)$ is the Gaussian hypergeometric function.

This solution converges numerically. However, I cannot find a closed form for $\displaystyle F\left(\frac{1}{3},\frac{1}{2};1;\frac{3}{4} \right)$ with elementary functions.

I have tried the some linear and quadratic transformations for $F(a,b;c;z)$ from hereand and here, respectively; but nothing seems to work. I guess that this integral could be somewhat related to this result. or the the modular lambda function

Bertrand87
  • 2,171
  • There is no expression of this using only elementary functions. Otherwise Wolfram alpha would give it to you. – markvs Feb 20 '22 at 04:17
  • 1
    Solutions - https://math.stackexchange.com/questions/2107016/interesting-closed-form-for-int-0-frac-pi2-frac1-left-frac13-s?noredirect=1 The third solution in this link is, probably, the easiest. – Svyatoslav Feb 20 '22 at 06:35
  • 1
    @Svyatoslav thank you!, I did not figured out that it was previously solved – Bertrand87 Feb 20 '22 at 06:48
  • @Bertrand87 is the solution at top of the question exact or approximate? It is hard to tell based on the wording. – Radial Arm Saw Feb 20 '22 at 13:32

0 Answers0