Let Sk = X1+X2+· · ·+Xk such that Xi for i ∈ {1, 2, . . . , k} are independently and identically exponentially distributed random variables with rate λ, i.e. Xi ∼ Exp(λ). Prove with adequate reasoning that Sk ∼ Gamma(x; k, λ)
My Solution: I used the moment generating function Mz(t) = $(\frac{1}{(1-(\frac{t}{λ})})^{k}$ to find E($X$) and E($X^2$) which allowed me to find $Var(X)$. The results I got were $E(X) = \frac{k}{λ}$ and $Var(X) = \frac{k}{λ^2}$. Then I set $k = 1$ and I got: $E(X) = \frac{1}{λ}$ and $Var(X) = \frac{1}{λ^2}$ which I believe are the correct values for mean and variance for the exponential distribution. Is this the correct solution?