Show that $$\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)=-2 \pi+2 \cos ^{-1} x$$ if $-1 \leq x \leq-\frac{1}{\sqrt{2}}.$
I tried solving this question a lot but I’m unable to. My answer comes different.
$\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)$ Putting $x=\cos \theta$ $$ \begin{array}{l} =\sin ^{-1}\left(2 \cos \theta \sqrt{1-\cos ^{2} \theta}\right) \\ =\sin ^{-1}\left(2 \cos \theta \sqrt{\sin ^{2} \theta}\right) \quad\left(\because 1-\cos ^{2} \theta=\sin ^{2} \theta\right) \end{array} $$ $$ =\sin ^{-1}(2 \cos \theta \sin \theta) $$ $$ =\sin ^{-1}(2 \cos \theta \sin \theta) $$ $$ =-\sin ^{-1}(\sin 2\theta) $$ (Using $\sin 2 x=2 \sin x \cos x$)
$=2 \theta \quad$ As $x=\cos \theta$ $=2 \times \cos ^{-1} x$ $=2 \cos ^{-1} x$
EDIT: If any confusion with Q writing