I tend to think this is true. If it isn't then:
- If $\lim_{n\rightarrow \infty} na_n = L \neq 0$, then, we get: $L-\varepsilon \leq na_n \rightarrow \frac{L-\varepsilon}{n}\leq a_n$ And because $\sum_{n = 1}^{\infty} \frac{L-\varepsilon}{n}$ diverges, so does the original sum.
- If $\lim_{n\rightarrow \infty} na_n = \infty$, we can disprove in a similar way.
- If $\lim_{n\rightarrow \infty} na_n$ diverges. Here I got stuck, and also can't find a counter-example to the original claim.